Visible to the public Biblio

Filters: Author is Ming Chen  [Clear All Filters]
2015-05-04
Jing Li, Ming Chen.  2014.  On-Road Multiple Obstacles Detection in Dynamical Background. Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on. 1:102-105.

Road In this paper, we focus on both the road vehicle and pedestrians detection, namely obstacle detection. At the same time, a new obstacle detection and classification technique in dynamical background is proposed. Obstacle detection is based on inverse perspective mapping and homography. Obstacle classification is based on fuzzy neural network. The estimation of the vanishing point relies on feature extraction strategy, which segments the lane markings of the images by combining a histogram-based segmentation with temporal filtering. Then, the vanishing point of each image is stabilized by means of a temporal filtering along the estimates of previous images. The IPM image is computed based on the stabilized vanishing point. The method exploits the geometrical relations between the elements in the scene so that obstacle can be detected. The estimated homography of the road plane between successive images is used for image alignment. A new fuzzy decision fusion method with fuzzy attribution for obstacle detection and classification application is described. The fuzzy decision function modifies parameters with auto-adapted algorithm to get better classification probability. It is shown that the method can achieve better classification result.
 

Ming Chen, Wenzhong Li, Zhuo Li, Sanglu Lu, Daoxu Chen.  2014.  Preserving location privacy based on distributed cache pushing. Wireless Communications and Networking Conference (WCNC), 2014 IEEE. :3456-3461.


Location privacy preservation has become an important issue in providing location based services (LBSs). When the mobile users report their locations to the LBS server or the third-party servers, they risk the leak of their location information if such servers are compromised. To address this issue, we propose a Location Privacy Preservation Scheme (LPPS) based on distributed cache pushing which is based on Markov Chain. The LPPS deploys distributed cache proxies in the most frequently visited areas to store the most popular location-related data and pushes them to mobile users passing by. In the way that the mobile users receive the popular location-related data from the cache proxies without reporting their real locations, the users' location privacy is well preserved, which is shown to achieve k-anonymity. Extensive experiments illustrate that the proposed LPPS achieve decent service coverage ratio and cache hit ratio with low communication overhead.