On-Road Multiple Obstacles Detection in Dynamical Background
Title | On-Road Multiple Obstacles Detection in Dynamical Background |
Publication Type | Conference Paper |
Year of Publication | 2014 |
Authors | Jing Li, Ming Chen |
Conference Name | Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on |
Date Published | Aug |
Keywords | auto-adapted algorithm, Cameras, Computer vision, dynamical background, feature extraction, feature extraction strategy, fuzzy attribution, fuzzy decision function, fuzzy decision fusion method, fuzzy neural nets, fuzzy neural network, Fuzzy neural networks, histogram-based segmentation, homography, image alignment, image classification, inverse perspective mapping, IPM image, lane markings, object detection, obstacle classification probability, on-road multiple obstacle detection, pedestrians, pedestrians detection, Radar, road plane, road vehicle, Roads, stabilized vanishing point, temporal filtering, Vehicles |
Abstract | Road In this paper, we focus on both the road vehicle and pedestrians detection, namely obstacle detection. At the same time, a new obstacle detection and classification technique in dynamical background is proposed. Obstacle detection is based on inverse perspective mapping and homography. Obstacle classification is based on fuzzy neural network. The estimation of the vanishing point relies on feature extraction strategy, which segments the lane markings of the images by combining a histogram-based segmentation with temporal filtering. Then, the vanishing point of each image is stabilized by means of a temporal filtering along the estimates of previous images. The IPM image is computed based on the stabilized vanishing point. The method exploits the geometrical relations between the elements in the scene so that obstacle can be detected. The estimated homography of the road plane between successive images is used for image alignment. A new fuzzy decision fusion method with fuzzy attribution for obstacle detection and classification application is described. The fuzzy decision function modifies parameters with auto-adapted algorithm to get better classification probability. It is shown that the method can achieve better classification result. |
DOI | 10.1109/IHMSC.2014.33 |
Citation Key | 6917316 |
- image classification
- vehicles
- temporal filtering
- stabilized vanishing point
- Roads
- road vehicle
- road plane
- Radar
- pedestrians detection
- pedestrians
- on-road multiple obstacle detection
- obstacle classification probability
- object detection
- lane markings
- IPM image
- inverse perspective mapping
- auto-adapted algorithm
- image alignment
- homography
- histogram-based segmentation
- Fuzzy neural networks
- fuzzy neural network
- fuzzy neural nets
- fuzzy decision fusion method
- fuzzy decision function
- fuzzy attribution
- feature extraction strategy
- feature extraction
- dynamical background
- computer vision
- Cameras