Visible to the public Biblio

Filters: Author is Chen, M.  [Clear All Filters]
2021-04-08
Lin, X., Zhang, Z., Chen, M., Sun, Y., Li, Y., Liu, M., Wang, Y., Liu, M..  2020.  GDGCA: A Gene Driven Cache Scheduling Algorithm in Information-Centric Network. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :167–172.
The disadvantages and inextensibility of the traditional network require more novel thoughts for the future network architecture, as for ICN (Information-Centric Network), is an information centered and self-caching network, ICN is deeply rooted in the 5G era, of which concept is user-centered and content-centered. Although the ICN enables cache replacement of content, an information distribution scheduling algorithm is still needed to allocate resources properly due to its limited cache capacity. This paper starts with data popularity, information epilepsy and other data related attributes in the ICN environment. Then it analyzes the factors affecting the cache, proposes the concept and calculation method of Gene value. Since the ICN is still in a theoretical state, this paper describes an ICN scenario that is close to the reality and processes a greedy caching algorithm named GDGCA (Gene Driven Greedy Caching Algorithm). The GDGCA tries to design an optimal simulation model, which based on the thoughts of throughput balance and satisfaction degree (SSD), then compares with the regular distributed scheduling algorithm in related research fields, such as the QoE indexes and satisfaction degree under different Poisson data volumes and cycles, the final simulation results prove that GDGCA has better performance in cache scheduling of ICN edge router, especially with the aid of Information Gene value.
2021-02-10
Lei, L., Chen, M., He, C., Li, D..  2020.  XSS Detection Technology Based on LSTM-Attention. 2020 5th International Conference on Control, Robotics and Cybernetics (CRC). :175—180.
Cross-site scripting (XSS) is one of the main threats of Web applications, which has great harm. How to effectively detect and defend against XSS attacks has become more and more important. Due to the malicious obfuscation of attack codes and the gradual increase in number, the traditional XSS detection methods have some defects such as poor recognition of malicious attack codes, inadequate feature extraction and low efficiency. Therefore, we present a novel approach to detect XSS attacks based on the attention mechanism of Long Short-Term Memory (LSTM) recurrent neural network. First of all, the data need to be preprocessed, we used decoding technology to restore the XSS codes to the unencoded state for improving the readability of the code, then we used word2vec to extract XSS payload features and map them to feature vectors. And then, we improved the LSTM model by adding attention mechanism, the LSTM-Attention detection model was designed to train and test the data. We used the ability of LSTM model to extract context-related features for deep learning, the added attention mechanism made the model extract more effective features. Finally, we used the classifier to classify the abstract features. Experimental results show that the proposed XSS detection model based on LSTM-Attention achieves a precision rate of 99.3% and a recall rate of 98.2% in the actually collected dataset. Compared with traditional machine learning methods and other deep learning methods, this method can more effectively identify XSS attacks.
2020-12-01
Zhang, Y., Deng, L., Chen, M., Wang, P..  2018.  Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse? IEEE/ACM Transactions on Networking. 26:1049—1062.

We consider the scenario where a cloud service provider (CSP) operates multiple geo-distributed datacenters to provide Internet-scale service. Our objective is to minimize the total electricity and bandwidth cost by jointly optimizing electricity procurement from wholesale markets and geographical load balancing (GLB), i.e., dynamically routing workloads to locations with cheaper electricity. Under the ideal setting where exact values of market prices and workloads are given, this problem reduces to a simple linear programming and is easy to solve. However, under the realistic setting where only distributions of these variables are available, the problem unfolds into a non-convex infinite-dimensional one and is challenging to solve. One of our main contributions is to develop an algorithm that is proven to solve the challenging problem optimally, by exploring the full design space of strategic bidding. Trace-driven evaluations corroborate our theoretical results, demonstrate fast convergence of our algorithm, and show that it can reduce the cost for the CSP by up to 20% as compared with baseline alternatives. This paper highlights the intriguing role of uncertainty in workloads and market prices, measured by their variances. While uncertainty in workloads deteriorates the cost-saving performance of joint electricity procurement and GLB, counter-intuitively, uncertainty in market prices can be exploited to achieve a cost reduction even larger than the setting without price uncertainty.

2020-11-20
Zhu, S., Chen, H., Xi, W., Chen, M., Fan, L., Feng, D..  2019.  A Worst-Case Entropy Estimation of Oscillator-Based Entropy Sources: When the Adversaries Have Access to the History Outputs. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :152—159.
Entropy sources are designed to provide unpredictable random numbers for cryptographic systems. As an assessment of the sources, Shannon entropy is usually adopted to quantitatively measure the unpredictability of the outputs. In several related works about the entropy evaluation of ring oscillator-based (RO-based) entropy sources, authors evaluated the unpredictability with the average conditional Shannon entropy (ACE) of the source, moreover provided a lower bound of the ACE (LBoACE). However, in this paper, we have demonstrated that when the adversaries have access to the history outputs of the entropy source, for example, by some intrusive attacks, the LBoACE may overestimate the actual unpredictability of the next output for the adversaries. In this situation, we suggest to adopt the specific conditional Shannon entropy (SCE) which exactly measures the unpredictability of the future output with the knowledge of previous output sequences and so is more consistent with the reality than the ACE. In particular, to be conservative, we propose to take the lower bound of the SCE (LBoSCE) as an estimation of the worst-case entropy of the sources. We put forward a detailed method to estimate this worst-case entropy of RO-based entropy sources, which we have also verified by experiment on an FPGA device. We recommend to adopt this method to provide a conservative assessment of the unpredictability when the entropy source works in a vulnerable environment and the adversaries might obtain the previous outputs.
2018-11-14
Xi, Z., Chen, L., Chen, M., Dai, Z., Li, Y..  2018.  Power Mobile Terminal Security Assessment Based on Weights Self-Learning. 2018 10th International Conference on Communication Software and Networks (ICCSN). :502–505.

At present, mobile terminals are widely used in power system and easy to be the target or springboard to attack the power system. It is necessary to have security assessment of power mobile terminal system to enable early warning of potential risks. In the context, this paper builds the security assessment system against to power mobile terminals, with features from security assessment system of general mobile terminals and power application scenarios. Compared with the existing methods, this paper introduces machine learning to the Rank Correlation Analysis method, which relies on expert experience, and uses objective experimental data to optimize the weight parameters of the indicators. From experiments, this paper proves that weights self-learning method can be used to evaluate the security of power mobile terminal system and improve credibility of the result.