Visible to the public Biblio

Filters: Author is Mancini, Federico  [Clear All Filters]
2021-09-16
Mancini, Federico, Bruvoll, Solveig, Melrose, John, Leve, Frederick, Mailloux, Logan, Ernst, Raphael, Rein, Kellyn, Fioravanti, Stefano, Merani, Diego, Been, Robert.  2020.  A Security Reference Model for Autonomous Vehicles in Military Operations. 2020 IEEE Conference on Communications and Network Security (CNS). :1–8.
In a previous article [1] we proposed a layered framework to support the assessment of the security risks associated with the use of autonomous vehicles in military operations and determine how to manage these risks appropriately. We established consistent terminology and defined the problem space, while exploring the first layer of the framework, namely risks from the mission assurance perspective. In this paper, we develop the second layer of the framework. This layer focuses on the risk assessment of the vehicles themselves and on producing a highlevel security design adequate for the mission defined in the first layer. To support this process, we also define a reference model for autonomous vehicles to use as a common basis for the assessment of risks and the design of the security controls.
2018-11-28
Kongsg$\backslash$a ard, Kyrre W., Nordbotten, Nils A., Mancini, Federico, Engelstad, Paal E..  2017.  An Internal/Insider Threat Score for Data Loss Prevention and Detection. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. :11–16.

During the recent years there has been an increased focus on preventing and detecting insider attacks and data thefts. A promising approach has been the construction of data loss prevention systems (DLP) that scan outgoing traffic for sensitive data. However, these automated systems are plagued with a high false positive rate. In this paper we introduce the concept of a meta-score that uses the aggregated output from DLP systems to detect and flag behavior indicative of data leakage. The proposed internal/insider threat score is built on the idea of detecting discrepancies between the userassigned sensitivity level and the sensitivity level inferred by the DLP system, and captures the likelihood that a given entity is leaking data. The practical usefulness of the proposed score is demonstrated on the task of identifying likely internal threats.