Visible to the public Biblio

Filters: Author is Mylrea, M.  [Clear All Filters]
2022-02-25
Sebastian-Cardenas, D., Gourisetti, S., Mylrea, M., Moralez, A., Day, G., Tatireddy, V., Allwardt, C., Singh, R., Bishop, R., Kaur, K. et al..  2021.  Digital data provenance for the power grid based on a Keyless Infrastructure Security Solution. 2021 Resilience Week (RWS). :1–10.
In this work a data provenance system for grid-oriented applications is presented. The proposed Keyless Infrastructure Security Solution (KISS) provides mechanisms to store and maintain digital data fingerprints that can later be used to validate and assert data provenance using a time-based, hash tree mechanism. The developed solution has been designed to satisfy the stringent requirements of the modern power grid including execution time and storage necessities. Its applicability has been tested using a lab-scale, proof-of-concept deployment that secures an energy management system against the attack sequence observed on the 2016 Ukrainian power grid cyberattack. The results demonstrate a strong potential for enabling data provenance in a wide array of applications, including speed-sensitive applications such as those found in control room environments.
2019-05-08
Mylrea, M., Gourisetti, S. N. G., Larimer, C., Noonan, C..  2018.  Insider Threat Cybersecurity Framework Webtool Methodology: Defending Against Complex Cyber-Physical Threats. 2018 IEEE Security and Privacy Workshops (SPW). :207–216.

This paper demonstrates how the Insider Threat Cybersecurity Framework (ITCF) web tool and methodology help provide a more dynamic, defense-in-depth security posture against insider cyber and cyber-physical threats. ITCF includes over 30 cybersecurity best practices to help organizations identify, protect, detect, respond and recover to sophisticated insider threats and vulnerabilities. The paper tests the efficacy of this approach and helps validate and verify ITCF's capabilities and features through various insider attacks use-cases. Two case-studies were explored to determine how organizations can leverage ITCF to increase their overall security posture against insider attacks. The paper also highlights how ITCF facilitates implementation of the goals outlined in two Presidential Executive Orders to improve the security of classified information and help owners and operators secure critical infrastructure. In realization of these goals, ITCF: provides an easy to use rapid assessment tool to perform an insider threat self-assessment; determines the current insider threat cybersecurity posture; defines investment-based goals to achieve a target state; connects the cybersecurity posture with business processes, functions, and continuity; and finally, helps develop plans to answer critical organizational cybersecurity questions. In this paper, the webtool and its core capabilities are tested by performing an extensive comparative assessment over two different high-profile insider threat incidents.