Visible to the public Biblio

Filters: Author is Laverty, David  [Clear All Filters]
2022-08-12
Khan, Rafiullah, McLaughlin, Kieran, Kang, BooJoong, Laverty, David, Sezer, Sakir.  2021.  A Novel Edge Security Gateway for End-to-End Protection in Industrial Internet of Things. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
Many critical industrial control systems integrate a mixture of state-of-the-art and legacy equipment. Legacy installations lack advanced, and often even basic security features, risking entire system security. Existing research primarily focuses on the development of secure protocols for emerging devices or protocol translation proxies for legacy equipment. However, a robust security framework not only needs encryption but also mechanisms to prevent reconnaissance and unauthorized access to industrial devices. This paper proposes a novel Edge Security Gateway (ESG) that provides both, communication and endpoint security. The ESG is based on double ratchet algorithm and encrypts every message with a different key. It manages the ongoing renewal of short-lived session keys and provides localized firewall protection to individual devices. The ESG is easily customizable for a wide range of industrial application. As a use case, this paper presents the design and validation for synchrophasor technology in smart grid. The ESG effectiveness is practically validated in detecting reconnaissance, manipulation, replay, and command injection attacks due to its perfect forward and backward secrecy properties.
2020-04-13
O’Raw, John, Laverty, David, Morrow, D. John.  2019.  Securing the Industrial Internet of Things for Critical Infrastructure (IIoT-CI). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :70–75.
The Industrial Internet of Things (IIoT) is a term applied to the industrial application of M2M devices. The security of IIoT devices is a difficult problem and where the automation of critical infrastructure is intended, risks may be unacceptable. Remote attacks are a significant threat and solutions are sought which are secure by default. The problem space may be analyzed using threat modelling methods. Software Defined Networks (SDN) provide mitigation for remote attacks which exploit local area networks. Similar concepts applied to the WAN may improve availability and performance and provide granular data on link characteristics. Schemes such as the Software Defined Perimeter allow IIoT devices to communicate on the Internet, mitigating avenues of remote attack. Finally, separation of duties at the IIoT device may prevent attacks on the integrity of the device or the confidentiality and integrity of its communications. Work remains to be done on the mitigation of DDoS.