Biblio
We propose a novel attestation architecture for the Internet of Things (IoT). Our distributed attestation network (DAN) utilizes blockchain technology to store and share device information. We present the design of this new attestation architecture as well as a prototype system chosen to emulate an IoT deployment with a network of Raspberry Pi, Infineon TPMs, and a Hyperledger Fabric blockchain.
The principle of least privilege requires that components of a program have access to only those resources necessary for their proper function. Defining proper function is a difficult task. Existing methods of privilege separation, like Control Flow Integrity and Software Fault Isolation, attempt to infer proper function by bridging the gaps between language abstractions and hardware capabilities. However, it is programmer intent that defines proper function, as the programmer writes the code that becomes law. Codifying programmer intent into policy is a promising way to capture proper function; however, often onerous policy creation can unnecessarily delay development and adoption. In this paper, we demonstrate the use of our ELF-based access control (ELFbac), a novel technique for policy definition and enforcement. ELFbac leverages the common programmer's existing mental model of scope, and allows for policy definition at the Application Binary Interface (ABI) level. We consider the roaming vulnerability found in OpenSSH, and demonstrate how using ELFbac would have provided strong mitigation with minimal program modification. This serves to illustrate the effectiveness of ELFbac as a means of privilege separation in further applications, and the intuitive, yet robust nature of our general approach to policy creation.