Visible to the public Biblio

Filters: Author is Smith, Sean  [Clear All Filters]
2019-10-30
Jenkins, Ira Ray, Bratus, Sergey, Smith, Sean, Koo, Maxwell.  2018.  Reinventing the Privilege Drop: How Principled Preservation of Programmer Intent Would Prevent Security Bugs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :3:1-3:9.

The principle of least privilege requires that components of a program have access to only those resources necessary for their proper function. Defining proper function is a difficult task. Existing methods of privilege separation, like Control Flow Integrity and Software Fault Isolation, attempt to infer proper function by bridging the gaps between language abstractions and hardware capabilities. However, it is programmer intent that defines proper function, as the programmer writes the code that becomes law. Codifying programmer intent into policy is a promising way to capture proper function; however, often onerous policy creation can unnecessarily delay development and adoption. In this paper, we demonstrate the use of our ELF-based access control (ELFbac), a novel technique for policy definition and enforcement. ELFbac leverages the common programmer's existing mental model of scope, and allows for policy definition at the Application Binary Interface (ABI) level. We consider the roaming vulnerability found in OpenSSH, and demonstrate how using ELFbac would have provided strong mitigation with minimal program modification. This serves to illustrate the effectiveness of ELFbac as a means of privilege separation in further applications, and the intuitive, yet robust nature of our general approach to policy creation.

2014-10-24
Kothari, Vijay, Blythe, Jim, Smith, Sean, Koppel, Ross.  2014.  Agent-based Modeling of User Circumvention of Security. 1st International Workshop on Agents and CyberSecurity. :5:1–5:4.

Security subsystems are often designed with flawed assumptions arising from system designers' faulty mental models. Designers tend to assume that users behave according to some textbook ideal, and to consider each potential exposure/interface in isolation. However, fieldwork continually shows that even well-intentioned users often depart from this ideal and circumvent controls in order to perform daily work tasks, and that "incorrect" user behaviors can create unexpected links between otherwise "independent" interfaces. When it comes to security features and parameters, designers try to find the choices that optimize security utility–-except these flawed assumptions give rise to an incorrect curve, and lead to choices that actually make security worse, in practice. We propose that improving this situation requires giving designers more accurate models of real user behavior and how it influences aggregate system security. Agent-based modeling can be a fruitful first step here. In this paper, we study a particular instance of this problem, propose user-centric techniques designed to strengthen the security of systems while simultaneously improving the usability of them, and propose further directions of inquiry.