Visible to the public Biblio

Filters: Author is Braun, Torsten  [Clear All Filters]
2021-05-20
Schaerer, Jakob, Zumbrunn, Severin, Braun, Torsten.  2020.  Veritaa - The Graph of Trust. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :168—175.

Today the integrity of digital documents and the authenticity of their origin is often hard to verify. Existing Public Key Infrastructures (PKIs) are capable of certifying digital identities but do not provide solutions to immutably store signatures, and the process of certification is often not transparent. In this work we propose Veritaa, a Distributed Public Key Infrastructure and Signature Store (DPKISS). The major innovation of Veritaa is the Graph of Trust, a directed graph that uses relations between identity claims to certify the identities and stores signed relations to digital document identifiers. The distributed architecture of Veritaa and the Graph of Trust enables a transparent certification process. To ensure non-repudiation and immutability of all actions that have been signed on the Graph of Trust, an application specific Distributed Ledger Technology (DLT) is used as secure storage. In this work a reference implementation of the proposed architecture was designed and implemented. Furthermore, a testbed was created and used for the evaluation of Veritaa. The evaluation of Veritaa shows the benefits and the high performance of the proposed architecture.

2019-11-04
Abani, Noor, Braun, Torsten, Gerla, Mario.  2018.  Betweenness Centrality and Cache Privacy in Information-Centric Networks. Proceedings of the 5th ACM Conference on Information-Centric Networking. :106-116.

In-network caching is a feature shared by all proposed Information Centric Networking (ICN) architectures as it is critical to achieving a more efficient retrieval of content. However, the default "cache everything everywhere" universal caching scheme has caused the emergence of several privacy threats. Timing attacks are one such privacy breach where attackers can probe caches and use timing analysis of data retrievals to identify if content was retrieved from the data source or from the cache, the latter case inferring that this content was requested recently. We have previously proposed a betweenness centrality based caching strategy to mitigate such attacks by increasing user anonymity. We demonstrated its efficacy in a transit-stub topology. In this paper, we further investigate the effect of betweenness centrality based caching on cache privacy and user anonymity in more general synthetic and real world Internet topologies. It was also shown that an attacker with access to multiple compromised routers can locate and track a mobile user by carrying out multiple timing analysis attacks from various parts of the network. We extend our privacy evaluation to a scenario with mobile users and show that a betweenness centrality based caching policy provides a mobile user with path privacy by increasing an attacker's difficulty in locating a moving user or identifying his/her route.