Visible to the public Biblio

Filters: Author is Vu, Thang X.  [Clear All Filters]
2023-07-12
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
2020-06-04
Cong, Huy Phi, Tran, Ha Huu, Trinh, Anh Vu, Vu, Thang X..  2019.  Modeling a Virtual Reality System with Caching and Computing Capabilities at Mobile User’ Device. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS). :393—397.

Virtual reality (VR) recently is a promising technique in both industry and academia due to its potential applications in immersive experiences including website, game, tourism, or museum. VR technique provides an amazing 3-Dimensional (3D) experiences by requiring a very high amount of elements such as images, texture, depth, focus length, etc. However, in order to apply VR technique to various devices, especially in mobiles, ultra-high transmission rate and extremely low latency are really big challenge. Considering this problem, this paper proposes a novel combination model by transforming the computing capability of VR device into an equivalent caching amount while remaining low latency and fast transmission. In addition, Classic caching models are used to computing and catching capabilities which is easily apply to multi-user models.

2020-01-20
Vu, Thang X., Vu, Trinh Anh, Lei, Lei, Chatzinotas, Symeon, Ottersten, Björn.  2019.  Linear Precoding Design for Cache-aided Full-duplex Networks. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Edge caching has received much attention as a promising technique to overcome the stringent latency and data hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit simultaneously. In this paper, we study a cache-aided FD system via delivery time analysis and optimization. In the considered system, an edge node (EN) operates in FD mode and serves users via wireless channels. Two optimization problems are formulated to minimize the largest delivery time based on the two popular linear beamforming zero-forcing and minimum mean square error designs. Since the formulated problems are non-convex due to the self-interference at the EN, we propose two iterative optimization algorithms based on the inner approximation method. The convergence of the proposed iterative algorithms is analytically guaranteed. Finally, the impacts of caching and the advantages of the FD system over the half-duplex (HD) counterpart are demonstrated via numerical results.