Visible to the public Biblio

Filters: Author is Schaefer, Rafael F.  [Clear All Filters]
2022-07-01
Günlü, Onur, Kliewer, Jörg, Schaefer, Rafael F., Sidorenko, Vladimir.  2021.  Doubly-Exponential Identification via Channels: Code Constructions and Bounds. 2021 IEEE International Symposium on Information Theory (ISIT). :1147—1152.
Consider the identification (ID) via channels problem, where a receiver wants to decide whether the transmitted identifier is its identifier, rather than decoding the identifier. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission (or channel) codes whose size scales exponentially. It suffices to use binary constant-weight codes (CWCs) to achieve the ID capacity. By relating the parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on the binary CWC size are proposed. These bounds are shown to be upper bounds also on the identifier sizes for ID codes constructed by using binary CWCs. We propose two code constructions based on optical orthogonal codes, which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and autocorrelation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We also illustrate ID performance regimes for which our ID code constructions perform significantly better than existing constructions.
2022-04-26
Kim, Muah, Günlü, Onur, Schaefer, Rafael F..  2021.  Federated Learning with Local Differential Privacy: Trade-Offs Between Privacy, Utility, and Communication. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2650–2654.

Federated learning (FL) allows to train a massive amount of data privately due to its decentralized structure. Stochastic gradient descent (SGD) is commonly used for FL due to its good empirical performance, but sensitive user information can still be inferred from weight updates shared during FL iterations. We consider Gaussian mechanisms to preserve local differential privacy (LDP) of user data in the FL model with SGD. The trade-offs between user privacy, global utility, and transmission rate are proved by defining appropriate metrics for FL with LDP. Compared to existing results, the query sensitivity used in LDP is defined as a variable, and a tighter privacy accounting method is applied. The proposed utility bound allows heterogeneous parameters over all users. Our bounds characterize how much utility decreases and transmission rate increases if a stronger privacy regime is targeted. Furthermore, given a target privacy level, our results guarantee a significantly larger utility and a smaller transmission rate as compared to existing privacy accounting methods.

2022-04-19
Boche, Holger, Schaefer, Rafael F., Vincent Poor, H..  2021.  Real Number Signal Processing Can Detect Denial-of-Service Attacks. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4765–4769.
Wireless communication systems are inherently vulnerable to adversarial attacks since malevolent jammers might jam and disrupt the legitimate transmission intentionally. Of particular interest are so- called denial-of-service (DoS) attacks in which the jammer is able to completely disrupt the communication. Accordingly, it is of crucial interest for the legitimate users to detect such DoS attacks. Turing machines provide the fundamental limits of today's digital computers and therewith of the traditional signal processing. It has been shown that these are incapable of detecting DoS attacks. This stimulates the question of how powerful the signal processing must be to enable the detection of DoS attacks. This paper investigates the general computation framework of Blum-Shub-Smale machines which allows the processing and storage of arbitrary reals. It is shown that such real number signal processing then enables the detection of DoS attacks.
2020-03-04
Schaefer, Rafael F., Boche, Holger, Poor, H. Vincent.  2019.  Turing Meets Shannon: On the Algorithmic Computability of the Capacities of Secure Communication Systems (Invited Paper). 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.

This paper presents the recent progress in studying the algorithmic computability of capacity expressions of secure communication systems. Several communication scenarios are discussed and reviewed including the classical wiretap channel, the wiretap channel with an active jammer, and the problem of secret key generation.