Visible to the public Biblio

Filters: Author is Miao, Fabiao  [Clear All Filters]
2020-03-09
Wang, Xin, Wang, Liming, Miao, Fabiao, Yang, Jing.  2019.  SVMDF: A Secure Virtual Machine Deployment Framework to Mitigate Co-Resident Threat in Cloud. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–7.

Recent studies have shown that co-resident attacks have aroused great security threat in cloud. Since hardware is shared among different tenants, malicious tenants can launch various co-resident attacks, such as side channel attacks, covert channel attacks and resource interference attacks. Existing countermeasures have their limitations and can not provide comprehensive defense against co-resident attacks. This paper combines the advantages of various countermeasures and proposes a complete co-resident threat defense solution which consists of co-resident-resistant VM allocation (CRRVA), analytic hierarchy process-based threat score mechanism (AHPTSM) and attack-aware VM reallocation (AAVR). CRRVA securely allocates VMs and also takes load balance and power consumption into consideration to make the allocation policy more practical. According to the intrinsic characteristics of co-resident attacks, AHPTSM evaluates VM's threat score which denotes the probability that a VM is suffering or conducting co-resident attacks based on analytic hierarchy process. And AAVR further migrates VMs with extremely high threat scores and separates VM pairs which are likely to be malicious to each other. Extensive experiments in CloudSim have shown that CRRVA can greatly reduce the allocation co-resident threat as well as balancing the load for both CSPs and tenants with little impact on power consumption. In addition, guided by threat score distribution, AAVR can effectively guarantee runtime co-resident security by migrating high threat score VMs with less migration cost.