Visible to the public Biblio

Filters: Author is Yang, Jing  [Clear All Filters]
2023-03-31
Yang, Jing, Yang, Yibiao, Sun, Maolin, Wen, Ming, Zhou, Yuming, Jin, Hai.  2022.  Isolating Compiler Optimization Faults via Differentiating Finer-grained Options. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :481–491.

Code optimization is an essential feature for compilers and almost all software products are released by compiler optimizations. Consequently, bugs in code optimization will inevitably cast significant impact on the correctness of software systems. Locating optimization bugs in compilers is challenging as compilers typically support a large amount of optimization configurations. Although prior studies have proposed to locate compiler bugs via generating witness test programs, they are still time-consuming and not effective enough. To address such limitations, we propose an automatic bug localization approach, ODFL, for locating compiler optimization bugs via differentiating finer-grained options in this study. Specifically, we first disable the fine-grained options that are enabled by default under the bug-triggering optimization levels independently to obtain bug-free and bug-related fine-grained options. We then configure several effective passing and failing optimization sequences based on such fine-grained options to obtain multiple failing and passing compiler coverage. Finally, such generated coverage information can be utilized via Spectrum-Based Fault Localization formulae to rank the suspicious compiler files. We run ODFL on 60 buggy GCC compilers from an existing benchmark. The experimental results show that ODFL significantly outperforms the state-of-the-art compiler bug isolation approach RecBi in terms of all the evaluated metrics, demonstrating the effectiveness of ODFL. In addition, ODFL is much more efficient than RecBi as it can save more than 88% of the time for locating bugs on average.

ISSN: 1534-5351

2022-06-10
Yang, Jing, Vega-Oliveros, Didier, Seibt, Tais, Rocha, Anderson.  2021.  Scalable Fact-checking with Human-in-the-Loop. 2021 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Researchers have been investigating automated solutions for fact-checking in various fronts. However, current approaches often overlook the fact that information released every day is escalating, and a large amount of them overlap. Intending to accelerate fact-checking, we bridge this gap by proposing a new pipeline – grouping similar messages and summarizing them into aggregated claims. Specifically, we first clean a set of social media posts (e.g., tweets) and build a graph of all posts based on their semantics; Then, we perform two clustering methods to group the messages for further claim summarization. We evaluate the summaries both quantitatively with ROUGE scores and qualitatively with human evaluation. We also generate a graph of summaries to verify that there is no significant overlap among them. The results reduced 28,818 original messages to 700 summary claims, showing the potential to speed up the fact-checking process by organizing and selecting representative claims from massive disorganized and redundant messages.
2020-09-18
2020-03-09
Wang, Xin, Wang, Liming, Miao, Fabiao, Yang, Jing.  2019.  SVMDF: A Secure Virtual Machine Deployment Framework to Mitigate Co-Resident Threat in Cloud. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–7.

Recent studies have shown that co-resident attacks have aroused great security threat in cloud. Since hardware is shared among different tenants, malicious tenants can launch various co-resident attacks, such as side channel attacks, covert channel attacks and resource interference attacks. Existing countermeasures have their limitations and can not provide comprehensive defense against co-resident attacks. This paper combines the advantages of various countermeasures and proposes a complete co-resident threat defense solution which consists of co-resident-resistant VM allocation (CRRVA), analytic hierarchy process-based threat score mechanism (AHPTSM) and attack-aware VM reallocation (AAVR). CRRVA securely allocates VMs and also takes load balance and power consumption into consideration to make the allocation policy more practical. According to the intrinsic characteristics of co-resident attacks, AHPTSM evaluates VM's threat score which denotes the probability that a VM is suffering or conducting co-resident attacks based on analytic hierarchy process. And AAVR further migrates VMs with extremely high threat scores and separates VM pairs which are likely to be malicious to each other. Extensive experiments in CloudSim have shown that CRRVA can greatly reduce the allocation co-resident threat as well as balancing the load for both CSPs and tenants with little impact on power consumption. In addition, guided by threat score distribution, AAVR can effectively guarantee runtime co-resident security by migrating high threat score VMs with less migration cost.

2017-03-27
Doerr, Benjamin, Doerr, Carola, Yang, Jing.  2016.  Optimal Parameter Choices via Precise Black-Box Analysis. Proceedings of the Genetic and Evolutionary Computation Conference 2016. :1123–1130.

In classical runtime analysis it has been observed that certain working principles of an evolutionary algorithm cannot be understood by only looking at the asymptotic order of the runtime, but that more precise estimates are needed. In this work we demonstrate that the same observation applies to black-box complexity analysis. We prove that the unary unbiased black-box complexity of the classic OneMax function class is n ln(n) – cn ± o(n) for a constant c between 0.2539 and 0.2665. Our analysis yields a simple (1+1)-type algorithm achieving this runtime bound via a fitness-dependent mutation strength. When translated into a fixed-budget perspective, our algorithm with the same budget computes a solution that asymptotically is 13% closer to the optimum (given that the budget is at least 0.2675n).