Visible to the public Biblio

Filters: Author is Aschenbruck, Nils  [Clear All Filters]
2023-02-17
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
2023-02-13
Zimmermann, Till, Lanfer, Eric, Aschenbruck, Nils.  2022.  Developing a Scalable Network of High-Interaction Threat Intelligence Sensors for IoT Security. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :251—253.

In the last decade, numerous Industrial IoT systems have been deployed. Attack vectors and security solutions for these are an active area of research. However, to the best of our knowledge, only very limited insight in the applicability and real-world comparability of attacks exists. To overcome this widespread problem, we have developed and realized an approach to collect attack traces at a larger scale. An easily deployable system integrates well into existing networks and enables the investigation of attacks on unmodified commercial devices.

2020-03-23
Bothe, Alexander, Bauer, Jan, Aschenbruck, Nils.  2019.  RFID-assisted Continuous User Authentication for IoT-based Smart Farming. 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA). :505–510.
Smart Farming is driven by the emergence of precise positioning systems and Internet of Things technologies which have already enabled site-specific applications, sustainable resource management, and interconnected machinery. Nowadays, so-called Farm Management Information Systems (FMISs) enable farm-internal interconnection of agricultural machines and implements and, thereby, allow in-field data exchange and the orchestration of collaborative agricultural processes. Machine data is often directly logged during task execution. Moreover, interconnection of farms, agricultural contractors, and marketplaces ease the collaboration. However, current FMISs lack in security and particularly in user authentication. In this paper, we present a security architecture for a decentralized, manufacturer-independent, and open-source FMIS. Special attention is turned on the Radio Frequency Identification (RFID)-based continuous user authentication which greatly improves security and credibility of automated documentation, while at the same time preserves usability in practice.