Visible to the public Biblio

Filters: Author is Aydeger, Abdullah  [Clear All Filters]
2021-08-11
Saputro, Nico, Tonyali, Samet, Aydeger, Abdullah, Akkaya, Kemal, Rahman, Mohammad A., Uluagac, Selcuk.  2020.  A Review of Moving Target Defense Mechanisms for Internet of Things Applications. Modeling and Design of Secure Internet of Things. :563–614.
The chapter presents a review of proactive Moving Target Defense (MTD) paradigm and investigates the feasibility and potential of specific MTD approaches for the resource‐constrained Internet of Things (IoT) applications. The aim is not only to provide taxonomy of various MTD approaches but also to advocate MTD techniques in the dynamic network domain in conjunction with the emerging Software Defined Networking (SDN) for more effective proactive IoT defense. The Internet of Battlefield Things (IoBT) and Industrial IoT (IIoT), which subject to more attacks, are identified as two critical IoT domains that can reap from the SDN‐based MTD approaches. Finally, the chapter also discusses potential future research challenges of the MTD approaches in the IoT domain.
2020-05-15
Aydeger, Abdullah, Saputro, Nico, Akkaya, Kemal.  2018.  Utilizing NFV for Effective Moving Target Defense Against Link Flooding Reconnaissance Attacks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :946—951.

Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.