Visible to the public Biblio

Filters: Author is Xia, Shu-Tao  [Clear All Filters]
2022-02-09
Zhai, Tongqing, Li, Yiming, Zhang, Ziqi, Wu, Baoyuan, Jiang, Yong, Xia, Shu-Tao.  2021.  Backdoor Attack Against Speaker Verification. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2560–2564.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data (e.g., data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers (i.e., pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing back-door attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification.
2020-09-18
Hao, Jie, Shum, Kenneth W., Xia, Shu-Tao, Yang, Yi-Xian.  2019.  Classification of Optimal Ternary (r, δ)-Locally Repairable Codes Attaining the Singleton-like Bound. 2019 IEEE International Symposium on Information Theory (ISIT). :2828—2832.
In a linear code, a code symbol with (r, δ)-locality can be repaired by accessing at most r other code symbols in case of at most δ - 1 erasures. A q-ary (n, k, r, δ) locally repairable codes (LRC) in which every code symbol has (r, δ)-locality is said to be optimal if it achieves the Singleton-like bound derived by Prakash et al.. In this paper, we study the classification of optimal ternary (n, k, r, δ)-LRCs (δ \textbackslashtextgreater 2). Firstly, we propose an upper bound on the minimum distance of optimal q-ary LRCs in terms of the field size. Then, we completely determine all the 6 classes of possible parameters with which optimal ternary (n, k, r, δ)-LRCs exist. Moreover, explicit constructions of all these 6 classes of optimal ternary LRCs are proposed in the paper.
2020-05-22
Yang, Jiacheng, Chen, Bin, Xia, Shu-Tao.  2019.  Mean-Removed Product Quantization for Approximate Nearest Neighbor Search. 2019 International Conference on Data Mining Workshops (ICDMW). :711—718.
Product quantization (PQ) and its variations are popular and attractive in approximate nearest neighbor search (ANN) due to their lower memory usage and faster retrieval speed. PQ decomposes the high-dimensional vector space into several low-dimensional subspaces, and quantizes each sub-vector in their subspaces, separately. Thus, PQ can generate a codebook containing an exponential number of codewords or indices by a Cartesian product of the sub-codebooks from different subspaces. However, when there is large variance in the average amplitude of the components of the data points, directly utilizing the PQ on the data points would result in poor performance. In this paper, we propose a new approach, namely, mean-removed product quantization (MRPQ) to address this issue. In fact, the average amplitude of a data point or the mean of a date point can be regarded as statistically independent of the variation of the vector, that is, of the way the components vary about this average. Then we can learn a separate scalar quantizer of the means of the data points and apply the PQ to their residual vectors. As shown in our comprehensive experiments on four large-scale public datasets, our approach can achieve substantial improvements in terms of Recall and MAP over some known methods. Moreover, our approach is general which can be combined with PQ and its variations.