Visible to the public Biblio

Filters: Author is Jiang, Yong  [Clear All Filters]
2023-06-23
Xie, Guorui, Li, Qing, Cui, Chupeng, Zhu, Peican, Zhao, Dan, Shi, Wanxin, Qi, Zhuyun, Jiang, Yong, Xiao, Xi.  2022.  Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :225–236.
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills per-flow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
ISSN: 2575-8462
2022-02-09
Zhai, Tongqing, Li, Yiming, Zhang, Ziqi, Wu, Baoyuan, Jiang, Yong, Xia, Shu-Tao.  2021.  Backdoor Attack Against Speaker Verification. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2560–2564.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data (e.g., data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers (i.e., pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing back-door attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification.