Biblio
Filters: Author is Shui, Shengkun [Clear All Filters]
Modulated Signal Recognition Based on Feature-Multiplexed Convolutional Neural Networks. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:621–624.
.
2021. Modulated signal identification plays a crucial role in both military reconnaissance and civilian signal regulation. Traditionally, modulated signal identification is based on high-order statistics, but this approach has many drawbacks. With the development of deep learning, its advantages are fully exploited by combining it with modulated signals to avoid the complex process of computing a priori knowledge while having good fault tolerance. In this paper, ten digital modulated signals are classified and recognized, and improvements are made on the basis of convolutional neural networks, using feature reuse to increase the depth of the convolutional layer and extract signal features with better results. After experimental analysis, the recognition accuracy increases with the rise of the signal-to-noise ratio, and can reach 90% and above when the signal-to-noise ratio is 30dB.