Visible to the public Biblio

Filters: Author is Li, Lianlin  [Clear All Filters]
2020-06-12
Wang, Min, Li, Haoyang, Shuang, Ya, Li, Lianlin.  2019.  High-resolution Three-dimensional Microwave Imaging Using a Generative Adversarial Network. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). 1:1—3.

To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.