Visible to the public Biblio

Filters: Author is Wang, Min  [Clear All Filters]
2021-10-04
Qu, Dapeng, Zhang, Jiankun, Hou, Zhenhuan, Wang, Min, Dong, Bo.  2020.  A Trust Routing Scheme Based on Identification of Non-complete Cooperative Nodes in Mobile Peer-to-Peer Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :22–29.
Mobile peer-to-peer network (MP2P) attracts increasing attentions due to the ubiquitous use of mobile communication and huge success of peer-to-peer (P2P) mode. However, open p2p mode makes nodes tend to be selfish, and the scarcity of resources in mobile nodes aggravates this problem, thus the nodes easily express a non-complete cooperative (NCC) attitude. Therefore, an identification of non-complete cooperative nodes and a corresponding trust routing scheme are proposed for MP2P in this paper. The concept of octant is firstly introduced to build a trust model which analyzes nodes from three dimensions, namely direct trust, internal state and recommendation reliability, and then the individual non-complete cooperative (INCC) nodes can be identified by the division of different octants. The direct trust monitors nodes' external behaviors, and the consideration of internal state and recommendation reliability contributes to differentiate the subjective and objective non-cooperation, and mitigate the attacks about direct trust values respectively. Thus, the trust model can identify various INCC nodes accurately. On the basis of identification of INCC nodes, cosine similarity method is applied to identify collusive non-complete cooperate (CNCC) nodes. Moreover, a trust routing scheme based on the identification of NCC nodes is presented to reasonably deal with different kinds of NCC nodes. Results from extensive simulation experiments demonstrate that this proposed identification and routing scheme have better performances, in terms of identification precision and packet delivery fraction than current schemes respectively.
2020-06-12
Wang, Min, Li, Haoyang, Shuang, Ya, Li, Lianlin.  2019.  High-resolution Three-dimensional Microwave Imaging Using a Generative Adversarial Network. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). 1:1—3.

To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.

2017-08-02
Wang, Min, Zhou, Wengang, Tian, Qi, Zha, Zhengjun, Li, Houqiang.  2016.  Linear Distance Preserving Pseudo-Supervised and Unsupervised Hashing. Proceedings of the 2016 ACM on Multimedia Conference. :1257–1266.

With the advantage in compact representation and efficient comparison, binary hashing has been extensively investigated for approximate nearest neighbor search. In this paper, we propose a novel and general hashing framework, which simultaneously considers a new linear pair-wise distance preserving objective and point-wise constraint. The direct distance preserving objective aims to keep the linear relationships between the Euclidean distance and the Hamming distance of data points. Based on different point-wise constraints, we propose two methods to instantiate this framework. The first one is a pseudo-supervised hashing method, which uses existing unsupervised hashing methods to generate binary codes as pseudo-supervised information. The second one is an unsupervised hashing method, in which quantization loss is considered. We validate our framework on two large-scale datasets. The experiments demonstrate that our pseudo-supervised method achieves consistent improvement for the state-of-the-art unsupervised hashing methods, while our unsupervised method outperforms the state-of-the-art methods.