Visible to the public Biblio

Filters: Author is Jha, A.  [Clear All Filters]
2021-02-23
Patil, A., Jha, A., Mulla, M. M., Narayan, D. G., Kengond, S..  2020.  Data Provenance Assurance for Cloud Storage Using Blockchain. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :443—448.

Cloud forensics investigates the crime committed over cloud infrastructures like SLA-violations and storage privacy. Cloud storage forensics is the process of recording the history of the creation and operations performed on a cloud data object and investing it. Secure data provenance in the Cloud is crucial for data accountability, forensics, and privacy. Towards this, we present a Cloud-based data provenance framework using Blockchain, which traces data record operations and generates provenance data. Initially, we design a dropbox like application using AWS S3 storage. The application creates a cloud storage application for the students and faculty of the university, thereby making the storage and sharing of work and resources efficient. Later, we design a data provenance mechanism for confidential files of users using Ethereum blockchain. We also evaluate the proposed system using performance parameters like query and transaction latency by varying the load and number of nodes of the blockchain network.

2018-11-19
Chelaramani, S., Jha, A., Namboodiri, A. M..  2018.  Cross-Modal Style Transfer. 2018 25th IEEE International Conference on Image Processing (ICIP). :2157–2161.

We, humans, have the ability to easily imagine scenes that depict sentences such as ``Today is a beautiful sunny day'' or ``There is a Christmas feel, in the air''. While it is hard to precisely describe what one person may imagine, the essential high-level themes associated with such sentences largely remains the same. The ability to synthesize novel images that depict the feel of a sentence is very useful in a variety of applications such as education, advertisement, and entertainment. While existing papers tackle this problem given a style image, we aim to provide a far more intuitive and easy to use solution that synthesizes novel renditions of an existing image, conditioned on a given sentence. We present a method for cross-modal style transfer between an English sentence and an image, to produce a new image that imbibes the essential theme of the sentence. We do this by modifying the style transfer mechanism used in image style transfer to incorporate a style component derived from the given sentence. We demonstrate promising results using the YFCC100m dataset.

2015-05-06
Kundu, S., Jha, A., Chattopadhyay, S., Sengupta, I., Kapur, R..  2014.  Framework for Multiple-Fault Diagnosis Based on Multiple Fault Simulation Using Particle Swarm Optimization. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on. 22:696-700.

This brief proposes a framework to analyze multiple faults based on multiple fault simulation in a particle swarm optimization environment. Experimentation shows that up to ten faults can be diagnosed in a reasonable time. However, the scheme does not put any restriction on the number of simultaneous faults.