Visible to the public Biblio

Filters: Author is Yadav, Om Prakash  [Clear All Filters]
2021-08-17
Jaiswal, Ayshwarya, Dwivedi, Vijay Kumar, Yadav, Om Prakash.  2020.  Big Data and its Analyzing Tools : A Perspective. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :560–565.
Data are generated and stored in databases at a very high speed and hence it need to be handled and analyzed properly. Nowadays industries are extensively using Hadoop and Spark to analyze the datasets. Both the frameworks are used for increasing processing speeds in computing huge complex datasets. Many researchers are comparing both of them. Now, the big questions arising are, Is Spark a substitute for Hadoop? Is hadoop going to be replaced by spark in mere future?. Spark is “built on top of” Hadoop and it extends the model to deploy more types of computations which incorporates Stream Processing and Interactive Queries. No doubt, Spark's execution speed is much faster than Hadoop, but talking in terms of fault tolerance, hadoop is slightly more fault tolerant than spark. In this article comparison of various bigdata analytics tools are done and Hadoop and Spark are discussed in detail. This article further gives an overview of bigdata, spark and hadoop issues. In this survey paper, the approaches to resolve the issues of spark and hadoop are discussed elaborately.
2020-07-06
Frias, Alex Davila, Yodo, Nita, Yadav, Om Prakash.  2019.  Mixed-Degradation Profiles Assessment of Critical Components in Cyber-Physical Systems. 2019 Annual Reliability and Maintainability Symposium (RAMS). :1–6.
This paper presents a general model to assess the mixed-degradation profiles of critical components in a Cyber-Physical System (CPS) based on the reliability of its critical physical and software components. In the proposed assessment, the cyber aspect of a CPS was approached from a software reliability perspective. Although extensive research has been done on physical components degradation and software reliability separately, research for the combined physical-software systems is still scarce. The non-homogeneous Poisson Processes (NHPP) software reliability models are deemed to fit well with the real data and have descriptive and predictive abilities, which could make them appropriate to estimate software components reliability. To show the feasibility of the proposed approach, a case study for mixed-degradation profiles assessment is presented with n physical components and one major software component forming a critical subsystem in CPS. Two physical components were assumed to have different degradation paths with the dependency between them. Series and parallel structures were investigated for physical components. The software component failure data was taken from a wireless network switching center and fitted into a Weibull software reliability model. The case study results revealed that mix-degradation profiles of physical components, combined with software component profile, produced a different CPS reliability profile.