Visible to the public Biblio

Filters: Author is Vugrin, Eric  [Clear All Filters]
2022-02-22
Jenkins, Chris, Vugrin, Eric, Manickam, Indu, Troutman, Nicholas, Hazelbaker, Jacob, Krakowiak, Sarah, Maxwell, Josh, Brown, Richard.  2021.  Moving Target Defense for Space Systems. 2021 IEEE Space Computing Conference (SCC). :60—71.
Space systems provide many critical functions to the military, federal agencies, and infrastructure networks. Nation-state adversaries have shown the ability to disrupt critical infrastructure through cyber-attacks targeting systems of networked, embedded computers. Moving target defenses (MTDs) have been proposed as a means for defending various networks and systems against potential cyber-attacks. MTDs differ from many cyber resilience technologies in that they do not necessarily require detection of an attack to mitigate the threat. We devised a MTD algorithm and tested its application to a real-time network. We demonstrated MTD usage with a real-time protocol given constraints not typically found in best-effort networks. Second, we quantified the cyber resilience benefit of MTD given an exfiltration attack by an adversary. For our experiment, we employed MTD which resulted in a reduction of adversarial knowledge by 97%. Even when the adversary can detect when the address changes, there is still a reduction in adversarial knowledge when compared to static addressing schemes. Furthermore, we analyzed the core performance of the algorithm and characterized its unpredictability using nine different statistical metrics. The characterization highlighted the algorithm has good unpredictability characteristics with some opportunity for improvement to produce more randomness.
2020-10-06
Jacobs, Nicholas, Hossain-McKenzie, Shamina, Vugrin, Eric.  2018.  Measurement and Analysis of Cyber Resilience for Control Systems: An Illustrative Example. 2018 Resilience Week (RWS). :38—46.

Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.