Biblio
Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.
Intrusion detection systems (IDSs) are an essential cog of the network security suite that can defend the network from malicious intrusions and anomalous traffic. Many machine learning (ML)-based IDSs have been proposed in the literature for the detection of malicious network traffic. However, recent works have shown that ML models are vulnerable to adversarial perturbations through which an adversary can cause IDSs to malfunction by introducing a small impracticable perturbation in the network traffic. In this paper, we propose an adversarial ML attack using generative adversarial networks (GANs) that can successfully evade an ML-based IDS. We also show that GANs can be used to inoculate the IDS and make it more robust to adversarial perturbations.