Biblio
Filters: Author is Gadagkar, Akhilraj V. [Clear All Filters]
Intrusion Detection of Sinkhole Attack in Underwater Acoustic Sensor Networks. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—7.
.
2021. Underwater networks have the potential to allow previously unexplored applications as well as improve our ability to observe and forecast the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if it is observed that security is indeed an important requirement in many emerging civilian and military applications. In this work, the sinkhole attack prevalent among UASNs is looked at and discuss mitigation approaches that can feasibly be implemented in UnetStack3.
Mitigating Localization and Neighbour Spoofing Attacks in Underwater Sensor Networks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.
.
2020. The location information of a node is one of the essential attributes used in most underwater communication routing algorithms to identify a candidate forwarding node by any of the sources. The exact location information of a node exchanged with its neighbours' in plain text and the absence of node authentication results in some of the attacks such as Sybil attack, Blackhole attack, and Wormhole attack. Moreover, the severe consequence of these attacks is Denial of Service (DoS), poor network performance, reduced network lifetime, etc. This paper proposes an anti-Spoof (a-Spoof) algorithm for mitigating localization and neighbour spoofing attacks in UASN. a-Spoof uses three pre-shared symmetric keys to share the location. Additionally, location integrity provided through the hash function. Further, the performance of a-Spoof demonstrated through its implementation in UnetStack with reference to end-to-end packet delay and the number of hops.