Visible to the public Biblio

Filters: Author is Primo, Abena  [Clear All Filters]
2021-08-17
Primo, Abena.  2020.  A Comparison of Blockchain-Based Wireless Sensor Network Protocols. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0793—0799.
Wireless sensors are often deployed in environments where it is difficult for them to discern friend from enemy. An example case is a military tactical scenario, where sensors are deployed to map the location of an item but where some of the nodes have been compromised or where there are other malicious nodes present. In this scenario, sharing data with other network nodes may present a critical security risk to the sensor nodes. Blockchain technology, with its ability to house a secure distributed ledger, offers a possible solution. However, blockchain applications for Wireless Sensor Networks suffer from poor latency in block propagation which in turn decreases throughput and network scalability. Several researchers have proposed solutions for improved network throughput. In this work, a comparison of these existing works is performed leading to a taxonomy of existing algorithms. Characteristics consistently found in algorithms reporting improved throughput are presented and, later, these characteristics are used in the development of a new algorithm for improving throughput. The proposed algorithm utilizes a proof-of- authority consensus algorithm with a node trust-based scheme. The proposed algorithm shows strong results over the base case algorithm and was evaluated with blockchain network simulations of up to 20000 nodes.