Biblio
Filters: Author is Wei, Jin [Clear All Filters]
A Software Diversity-Based Lab in Operating System for Cyber Security Students. 2021 IEEE 3rd International Conference on Computer Science and Educational Informatization (CSEI). :296—299.
.
2021. The course of operating system's labs usually fall behind the state of art technology. In this paper, we propose a Software Diversity-Assisted Defense (SDAD) lab based on software diversity, mainly targeting for students majoring in cyber security and computer science. This lab is consisted of multiple modules and covers most of the important concepts and principles in operating systems. Thus, the knowledge learned from the theoretical course will be deepened with the lab. For students majoring in cyber security, they can learn this new software diversity-based defense technology and understand how an exploit works from the attacker's side. The experiment is also quite stretchable, which can fit all level students.
Blockchain-Powered Software Defined Network-Enabled Networking Infrastructure for Cloud Management. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
.
2020. Cloud architecture has become a valuable solution for different applications, such as big data analytics, due to its high degree of availability, scalability and strategic value. However, there still remain challenges in managing cloud architecture, in areas such as cloud security. In this paper, we exploit software-defined networking (SDN) and blockchain technologies to secure cloud management platforms from a networking perspective. We develop a blockchain-powered SDN-enabled networking infrastructure in which the integration between blockchain-based security and autonomy management layer and multi-controller SDN networking layer is defined to enhance the integrity of the control and management messages. Furthermore, our proposed networking infrastructure also enables the autonomous bandwidth provisioning to enhance the availability of cloud architecture. In the simulation section, we evaluate the performance of our proposed blockchain-powered SDN-enabled networking infrastructure by considering different scenarios.