Biblio
When filling out privacy-related forms in public places such as hospitals or clinics, people usually are not aware that the sound of their handwriting leaks personal information. In this paper, we explore the possibility of eavesdropping on handwriting via nearby mobile devices based on audio signal processing and machine learning. By presenting a proof-of-concept system, WritingHacker, we show the usage of mobile devices to collect the sound of victims' handwriting, and to extract handwriting-specific features for machine learning based analysis. WritingHacker focuses on the situation where the victim's handwriting follows certain print style. An attacker can keep a mobile device, such as a common smart-phone, touching the desk used by the victim to record the audio signals of handwriting. Then the system can provide a word-level estimate for the content of the handwriting. To reduce the impacts of various writing habits and writing locations, the system utilizes the methods of letter clustering and dictionary filtering. Our prototype system's experimental results show that the accuracy of word recognition reaches around 50% - 60% under certain conditions, which reveals the danger of privacy leakage through the sound of handwriting.
The recent proliferation of human-carried mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to the public crowd equipped with various mobile devices. A fundamental issue in such systems is to effectively incentivize worker participation. However, instead of being an isolated module, the incentive mechanism usually interacts with other components which may affect its performance, such as data aggregation component that aggregates workers' data and data perturbation component that protects workers' privacy. Therefore, different from past literature, we capture such interactive effect, and propose INCEPTION, a novel MCS system framework that integrates an incentive, a data aggregation, and a data perturbation mechanism. Specifically, its incentive mechanism selects workers who are more likely to provide reliable data, and compensates their costs for both sensing and privacy leakage. Its data aggregation mechanism also incorporates workers' reliability to generate highly accurate aggregated results, and its data perturbation mechanism ensures satisfactory protection for workers' privacy and desirable accuracy for the final perturbed results. We validate the desirable properties of INCEPTION through theoretical analysis, as well as extensive simulations.