Biblio
Filters: Author is He, YaChen [Clear All Filters]
A dense state search method in edge computing environment. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP). :16—22.
.
2021. In view of the common edge computing-based cloud-side collaborative environment summary existing search key and authentication key sharing caused by data information leakage, this paper proposes a cryptographic search based on public key searchable encryption in an edge computing environment method, this article uses the public key to search for the characteristics of the encryption algorithm, and allows users to manage the corresponding private key. In the process of retrieval and execution, the security of the system can be effectively ensured through the secret trapdoor. Through the comparison of theoretical algorithms, the searchable encryption scheme in the edge computing environment proposed in this paper can effectively reduce the computing overhead on the user side, and complete the over-complex computing process on the edge server or the central server, which can improve the overall efficiency of encrypted search.
Access Control Scheme Supporting Attribute Revocation in Cloud Computing. 2021 International Conference on Networking and Network Applications (NaNA). :379–384.
.
2021. To break the data barrier of the information island and explore the value of data in the past few years, it has become a trend of uploading data to the cloud by data owners for data sharing. At the same time, they also hope that the uploaded data can still be controlled, which makes access control of cloud data become an intractable problem. As a famous cryptographic technology, ciphertext policy-based attribute encryption (CP-ABE) not only assures data confidentiality but implements fine-grained access control. However, the actual application of CP-ABE has its inherent challenge in attribute revocation. To address this challenge, we proposed an access control solution supporting attribute revocation in cloud computing. Unlike previous attribute revocation schemes, to solve the problem of excessive attribute revocation overhead, we use symmetric encryption technology to encrypt the plaintext data firstly, and then, encrypting the symmetric key by utilizing public-key encryption technology according to the access structure, so that only the key ciphertext is necessary to update when the attributes are revoked, which reduces the spending of ciphertext update to a great degree. The comparative analysis demonstrates that our solution is reasonably efficient and more secure to support attribute revocation and access control after data sharing.