Visible to the public Biblio

Filters: Author is Baelde, David  [Clear All Filters]
2022-02-24
Baelde, David, Delaune, Stéphanie, Jacomme, Charlie, Koutsos, Adrien, Moreau, Solène.  2021.  An Interactive Prover for Protocol Verification in the Computational Model. 2021 IEEE Symposium on Security and Privacy (SP). :537–554.
Given the central importance of designing secure protocols, providing solid mathematical foundations and computer-assisted methods to attest for their correctness is becoming crucial. Here, we elaborate on the formal approach introduced by Bana and Comon in [10], [11], which was originally designed to analyze protocols for a fixed number of sessions, and lacks support for proof mechanization.In this paper, we present a framework and an interactive prover allowing to mechanize proofs of security protocols for an arbitrary number of sessions in the computational model. More specifically, we develop a meta-logic as well as a proof system for deriving security properties. Proofs in our system only deal with high-level, symbolic representations of protocol executions, similar to proofs in the symbolic model, but providing security guarantees at the computational level. We have implemented our approach within a new interactive prover, the Squirrel prover, taking as input protocols specified in the applied pi-calculus, and we have performed a number of case studies covering a variety of primitives (hashes, encryption, signatures, Diffie-Hellman exponentiation) and security properties (authentication, strong secrecy, unlinkability).