Biblio
Filters: Author is Nwakanma, Cosmas Ifeanyi [Clear All Filters]
Industrial Network Attack Vulnerability Detection and Analysis using Shodan Eye Scanning Technology. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :886–889.
.
2022. Exploring the efficient vulnerability scanning and detection technology of various tools is one fundamental aim of network security. This network security technique ameliorates the tremendous number of IoT security challenges and the threats they face daily. However, among various tools, Shodan Eye scanning technology has proven to be very helpful for network administrators and security personnel to scan, detect and analyze vulnerable ports and traffic in organizations' networks. This work presents a simulated network scanning activity and manual vulnerability analysis of an internet-connected industrial equipment of two chosen industrial networks (Industry A and B) by running Shodan on a virtually hosted (Oracle Virtual Box)-Linux-based operating system (Kali Linux). The result shows that the shodan eye is a a promising tool for network security and efficient vulnerability research.
ISSN: 2162-1241
Enhanced Vulnerability Detection in SCADA Systems using Hyper-Parameter-Tuned Ensemble Learning. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :458–461.
.
2021. The growth of inter-dependency intricacies of Supervisory Control and Data Acquisition (SCADA) systems in industrial operations generates a likelihood of increased vulnerability to malicious threats and machine learning approaches have been extensively utilized in the research for vulnerability detection. Nonetheless, to improve security, an enhanced vulnerability detection using hyper-parameter-tune machine learning is proposed for early detection, classification and mitigation of SCADA communication and transmission networks by classifying benign, or malicious DNS attacks. The proposed scheme, an ensemble optimizer (GentleBoost) upon hyper-parameter tuning, gave a comparative achievement. From the simulation results, the proposed scheme had an outstanding performance within the shortest possible time with an accuracy of 99.49%, 99.23% for precision, and a recall rate of 99.75%. Also, the model was compared to other contemporary algorithms and outperformed all the other algorithms proving to be an approach to keep abreast of the SCADA network vulnerabilities and attacks.