Visible to the public Biblio

Filters: Author is Lee, Jae-Min  [Clear All Filters]
2023-03-03
Nkoro, Ebuka Chinaechetam, Nwakanma, Cosmas Ifeanyi, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Industrial Network Attack Vulnerability Detection and Analysis using Shodan Eye Scanning Technology. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :886–889.
Exploring the efficient vulnerability scanning and detection technology of various tools is one fundamental aim of network security. This network security technique ameliorates the tremendous number of IoT security challenges and the threats they face daily. However, among various tools, Shodan Eye scanning technology has proven to be very helpful for network administrators and security personnel to scan, detect and analyze vulnerable ports and traffic in organizations' networks. This work presents a simulated network scanning activity and manual vulnerability analysis of an internet-connected industrial equipment of two chosen industrial networks (Industry A and B) by running Shodan on a virtually hosted (Oracle Virtual Box)-Linux-based operating system (Kali Linux). The result shows that the shodan eye is a a promising tool for network security and efficient vulnerability research.
ISSN: 2162-1241
2023-02-24
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.