Visible to the public Biblio

Filters: Author is Song, Wei  [Clear All Filters]
2020-01-27
Zhang, Yiming, Fan, Yujie, Song, Wei, Hou, Shifu, Ye, Yanfang, Li, Xin, Zhao, Liang, Shi, Chuan, Wang, Jiabin, Xiong, Qi.  2019.  Your Style Your Identity: Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network. The World Wide Web Conference. :3448–3454.
Due to its anonymity, there has been a dramatic growth of underground drug markets hosted in the darknet (e.g., Dream Market and Valhalla). To combat drug trafficking (a.k.a. illicit drug trading) in the cyberspace, there is an urgent need for automatic analysis of participants in darknet markets. However, one of the key challenges is that drug traffickers (i.e., vendors) may maintain multiple accounts across different markets or within the same market. To address this issue, in this paper, we propose and develop an intelligent system named uStyle-uID leveraging both writing and photography styles for drug trafficker identification at the first attempt. At the core of uStyle-uID is an attributed heterogeneous information network (AHIN) which elegantly integrates both writing and photography styles along with the text and photo contents, as well as other supporting attributes (i.e., trafficker and drug information) and various kinds of relations. Built on the constructed AHIN, to efficiently measure the relatedness over nodes (i.e., traffickers) in the constructed AHIN, we propose a new network embedding model Vendor2Vec to learn the low-dimensional representations for the nodes in AHIN, which leverages complementary attribute information attached in the nodes to guide the meta-path based random walk for path instances sampling. After that, we devise a learning model named vIdentifier to classify if a given pair of traffickers are the same individual. Comprehensive experiments on the data collections from four different darknet markets are conducted to validate the effectiveness of uStyle-uID which integrates our proposed method in drug trafficker identification by comparisons with alternative approaches.
2017-03-07
Xia, Xiaoxu, Song, Wei, Chen, Fangfei, Li, Xuansong, Zhang, Pengcheng.  2016.  Effa: A proM Plugin for Recovering Event Logs. Proceedings of the 8th Asia-Pacific Symposium on Internetware. :108–111.

While event logs generated by business processes play an increasingly significant role in business analysis, the quality of data remains a serious problem. Automatic recovery of dirty event logs is desirable and thus receives more attention. However, existing methods only focus on missing event recovery, or fall short of efficiency. To this end, we present Effa, a ProM plugin, to automatically recover event logs in the light of process specifications. Based on advanced heuristics including process decomposition and trace replaying to search the minimum recovery, Effa achieves a balance between repairing accuracy and efficiency.