Visible to the public Biblio

Filters: Author is Krishnan, M. R.  [Clear All Filters]
2018-05-30
Pal, S., Poornachandran, P., Krishnan, M. R., Au, P. S., Sasikala, P..  2017.  Malsign: Threat Analysis of Signed and Implicitly Trusted Malicious Code. 2017 International Conference on Public Key Infrastructure and Its Applications (PKIA). :23–27.

Code signing which at present is the only methodology of trusting a code that is distributed to others. It heavily relies on the security of the software providers private key. Attackers employ targeted attacks on the code signing infrastructure for stealing the signing keys which are used later for distributing malware in disguise of genuine software. Differentiating a malware from a benign software becomes extremely difficult once it gets signed by a trusted software providers private key as the operating systems implicitly trusts this signed code. In this paper, we analyze the growing menace of signed malware by examining several real world incidents and present a threat model for the current code signing infrastructure. We also propose a novel solution that prevents this issue of malicious code signing by requiring additional verification of the executable. We also present the serious threat it poses and it consequences. To our knowledge this is the first time this specific issue of Malicious code signing has been thoroughly studied and an implementable solution is proposed.

2017-03-07
Poornachandran, P., Sreeram, R., Krishnan, M. R., Pal, S., Sankar, A. U. P., Ashok, A..  2015.  Internet of Vulnerable Things (IoVT): Detecting Vulnerable SOHO Routers. 2015 International Conference on Information Technology (ICIT). :119–123.

There has been a rampant surge in compromise of consumer grade small scale routers in the last couple of years. Attackers are able to manipulate the Domain Name Space (DNS) settings of these devices hence making them capable of initiating different man-in-the-middle attacks. By this study we aim to explore and comprehend the current state of these attacks. Focusing on the Indian Autonomous System Number (ASN) space, we performed scans over 3 months to successfully find vulnerable routers and extracted the DNS information from these vulnerable routers. In this paper we present the methodology followed for scanning, a detailed analysis report of the information we were able to collect and an insight into the current trends in the attack patterns. We conclude by proposing recommendations for mitigating these attacks.