Visible to the public Biblio

Filters: Author is Gupta, B. B.  [Clear All Filters]
2022-06-13
Gupta, B. B., Gaurav, Akshat, Peraković, Dragan.  2021.  A Big Data and Deep Learning based Approach for DDoS Detection in Cloud Computing Environment. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :287–290.
Recently, as a result of the COVID-19 pandemic, the internet service has seen an upsurge in use. As a result, the usage of cloud computing apps, which offer services to end users on a subscription basis, rises in this situation. However, the availability and efficiency of cloud computing resources are impacted by DDoS attacks, which are designed to disrupt the availability and processing power of cloud computing services. Because there is no effective way for detecting or filtering DDoS attacks, they are a dependable weapon for cyber-attackers. Recently, researchers have been experimenting with machine learning (ML) methods in order to create efficient machine learning-based strategies for detecting DDoS assaults. In this context, we propose a technique for detecting DDoS attacks in a cloud computing environment using big data and deep learning algorithms. The proposed technique utilises big data spark technology to analyse a large number of incoming packets and a deep learning machine learning algorithm to filter malicious packets. The KDDCUP99 dataset was used for training and testing, and an accuracy of 99.73% was achieved.
2022-04-13
Mishra, Anupama, Gupta, B. B., Peraković, Dragan, Peñalvo, Francisco José García, Hsu, Ching-Hsien.  2021.  Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
Distributed Denial of service attack(DDoS)is a network security attack and now the attackers intruded into almost every technology such as cloud computing, IoT, and edge computing to make themselves stronger. As per the behaviour of DDoS, all the available resources like memory, cpu or may be the entire network are consumed by the attacker in order to shutdown the victim`s machine or server. Though, the plenty of defensive mechanism are proposed, but they are not efficient as the attackers get themselves trained by the newly available automated attacking tools. Therefore, we proposed a classification based machine learning approach for detection of DDoS attack in cloud computing. With the help of three classification machine learning algorithms K Nearest Neighbor, Random Forest and Naive Bayes, the mechanism can detect a DDoS attack with the accuracy of 99.76%.
2019-07-01
Akhtar, T., Gupta, B. B., Yamaguchi, S..  2018.  Malware propagation effects on SCADA system and smart power grid. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.

Critical infrastructures have suffered from different kind of cyber attacks over the years. Many of these attacks are performed using malwares by exploiting the vulnerabilities of these resources. Smart power grid is one of the major victim which suffered from these attacks and its SCADA system are frequently targeted. In this paper we describe our proposed framework to analyze smart power grid, while its SCADA system is under attack by malware. Malware propagation and its effects on SCADA system is the focal point of our analysis. OMNeT++ simulator and openDSS is used for developing and analyzing the simulated smart power grid environment.

2019-01-31
Tewari, A., Gupta, B. B..  2018.  A Robust Anonymity Preserving Authentication Protocol for IoT Devices. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–5.

In spite of being a promising technology which will make our lives a lot easier we cannot be oblivious to the fact IoT is not safe from online threat and attacks. Thus, along with the growth of IoT we also need to work on its aspects. Taking into account the limited resources that these devices have it is important that the security mechanisms should also be less complex and do not hinder the actual functionality of the device. In this paper, we propose an ECC based lightweight authentication for IoT devices which deploy RFID tags at the physical layer. ECC is a very efficient public key cryptography mechanism as it provides privacy and security with lesser computation overhead. We also present a security and performance analysis to verify the strength of our proposed approach.

2017-04-20
Chaudhary, P., Gupta, B. B., Yamaguchi, S..  2016.  XSS detection with automatic view isolation on online social network. 2016 IEEE 5th Global Conference on Consumer Electronics. :1–5.

Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.