Visible to the public Biblio

Filters: Author is Ye, M.  [Clear All Filters]
2018-06-11
Ye, M., Shahrak, M. Z., Wei, S..  2017.  PUFSec: Protecting physical unclonable functions using hardware isolation-based system security techniques. 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :7–12.

This paper aims to address the security challenges on physical unclonable functions (PUFs) raised by modeling attacks and denial of service (DoS) attacks. We develop a hardware isolation-based secure architecture extension, namely PUFSec, to protect the target PUF from security compromises without modifying the internal PUF design. PUFSec achieves the security protection by physically isolating the PUF hardware and data from the attack surfaces accessible by the adversaries. Furthermore, we deploy strictly enforced security policies within PUFSec, which authenticate the incoming PUF challenges and prevent attackers from collecting sufficient PUF responses to issue modeling attacks or interfering with the PUF workflow to launch DoS attacks. We implement our PUFSec framework on a Xilinx SoC equipped with ARM processor. Our experimental results on the real hardware prove the enhanced security and the low performance and power overhead brought by PUFSec.

2017-11-20
Shahrak, M. Z., Ye, M., Swaminathan, V., Wei, S..  2016.  Two-way real time multimedia stream authentication using physical unclonable functions. 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP). :1–4.

Multimedia authentication is an integral part of multimedia signal processing in many real-time and security sensitive applications, such as video surveillance. In such applications, a full-fledged video digital rights management (DRM) mechanism is not applicable due to the real time requirement and the difficulties in incorporating complicated license/key management strategies. This paper investigates the potential of multimedia authentication from a brand new angle by employing hardware-based security primitives, such as physical unclonable functions (PUFs). We show that the hardware security approach is not only capable of accomplishing the authentication for both the hardware device and the multimedia stream but, more importantly, introduce minimum performance, resource, and power overhead. We justify our approach using a prototype PUF implementation on Xilinx FPGA boards. Our experimental results on the real hardware demonstrate the high security and low overhead in multimedia authentication obtained by using hardware security approaches.

2017-04-20
Ye, M., Hu, N., Wei, S..  2016.  Lightweight secure sensing using hardware isolation. 2016 IEEE SENSORS. :1–3.
This paper develops a new lightweight secure sensing technique using hardware isolation. We focus on protecting the sensor from unauthorized accesses, which can be issued by attackers attempting to compromise the security and privacy of the sensed data. We satisfy the security requirements by employing the hardware isolation feature provided by the secure processor of the target sensor system. In particular, we deploy the sensor in a hardware isolated secure environment, which eliminates the potential vulnerability exposed to unauthorized attackers. We implement the hardware isolation-based secure sensing approach on an Xilinx Zynq-7000 SoC leveraging ARM TrustZone. Our experiments and security analysis on the real hardware prove the effectiveness and low overhead of the proposed approach.