Visible to the public Biblio

Filters: Author is Zhang, Yuanyuan  [Clear All Filters]
2022-12-20
Lin, Xuanwei, Dong, Chen, Liu, Ximeng, Zhang, Yuanyuan.  2022.  SPA: An Efficient Adversarial Attack on Spiking Neural Networks using Spike Probabilistic. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model's accuracy under white-box attack decreases by 9.2S% 31.1S% better than others, and average success rates are 74.87% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting,
2017-05-18
Shu, Junliang, Zhang, Yuanyuan, Li, Juanru, Li, Bodong, Gu, Dawu.  2017.  Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence in Android Systems ACM Trans. Embed. Comput. Syst.. 16:61:1–61:22.

Smart mobile devices are becoming the main vessel of personal privacy information. While they carry valuable information, data erasure is somehow much more vulnerable than was predicted. The security mechanisms provided by the Android system are not flexible enough to thoroughly delete sensitive data. In addition to the weakness among several provided data-erasing and file-deleting mechanisms, we also target the Android OS design flaws in data erasure, and unveil that the design of the Android OS contradicts some secure data-erasure demands. We present the data-erasure flaws in three typical scenarios on mainstream Android devices, such as the data clearing flaw, application uninstallation flaw, and factory reset flaw. Some of these flaws are inherited data-deleting security issues from the Linux kernel, and some are new vulnerabilities in the Android system. Those scenarios reveal the data leak points in Android systems. Moreover, we reveal that the data remanence on the disk is rarely affected by the user’s daily operation, such as file deletion and app installation and uninstallation, by a real-world data deletion latency experiment. After one volunteer used the Android phone for 2 months, the data remanence amount was still considerable. Then, we proposed DataRaider for file recovering from disk fragments. It adopts a file-carving technique and is implemented as an automated sensitive information recovering framework. DataRaider is able to extract private data in a raw disk image without any file system information, and the recovery rate is considerably high in the four test Android phones. We propose some mitigation for data remanence issues, and give the users some suggestions on data protection in Android systems.