Visible to the public Biblio

Filters: Author is Fan, Deliang  [Clear All Filters]
2022-12-20
Rakin, Adnan Siraj, Chowdhuryy, Md Hafizul Islam, Yao, Fan, Fan, Deliang.  2022.  DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories. 2022 IEEE Symposium on Security and Privacy (SP). :1157–1174.
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
ISSN: 2375-1207
2018-01-23
Alasad, Qutaiba, Yuan, Jiann, Fan, Deliang.  2017.  Leveraging All-Spin Logic to Improve Hardware Security. Proceedings of the on Great Lakes Symposium on VLSI 2017. :491–494.

Due to the globalization of Integrated Circuit (IC) design in the semiconductor industry and the outsourcing of chip manufacturing, third Party Intellectual Properties (3PIPs) become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware trojans. A designer has to employ a strong technique to thwart such attacks, e.g. using Strong Logic Locking method [1]. But, such technique cannot be used to protect some circuits since the inserted key-gates rely on the topology of the circuit. Also, it requires higher power, delay, and area overheads compared to other techniques. In this paper, we present the use of spintronic devices to help protect ICs with less performance overhead. We then evaluate the proposed design based on security metric and performance overhead. One of the best spintronic device candidates is the All Spin Logic due to its unique properties: small area, no spin-charge signal conversion, and its compatibility with conventional CMOS technology.

2017-05-19
He, Zhezhi, Fan, Deliang.  2016.  A Low Power Current-Mode Flash ADC with Spin Hall Effect Based Multi-Threshold Comparator. Proceedings of the 2016 International Symposium on Low Power Electronics and Design. :314–319.

Current-mode Analog-to-Digital Converter (ADC) has drawn many attentions due to its high operating speed, power and ground noise immunity, and etc. However, 2n – 1 comparators are required in traditional n-bit current-mode ADC design, leading to inevitable high power consumption and large chip area. In this work, we propose a low power and compact current mode Multi-Threshold Comparator (MTC) based on giant Spin Hall Effect (SHE). The two threshold currents of the proposed SHE-MTC are 200μA and 250μA with 1ns switching time, respectively. The proposed current-mode hybrid spin-CMOS flash ADC based on SHE-MTC reduces the number of comparators almost by half (2n-1), thus correspondingly reducing the required current mirror branches, total power consumption and chip area. Moreover, due to the non-volatility of SHE-MTC, the front-end analog circuits can be switched off when it is not required to further increase power efficiency. The device dynamics of SHE-MTC is simulated using a numerical device model based on Landau-Lifshitz-Gilbert (LLG) equation with Spin-Transfer Torque (STT) term and SHE term. The device-circuit co-simulation in SPICE (45nm CMOS technology) have shown that the average power dissipation of proposed ADC is 1.9mW, operating at 500MS/s with 1.2 V power supply. The INL and DNL are in the range of 0.23LSB and 0.32LSB, respectively.