Visible to the public Biblio

Filters: Author is Rioul, Olivier  [Clear All Filters]
2023-09-01
Cheng, Wei, Liu, Yi, Guilley, Sylvain, Rioul, Olivier.  2022.  Attacking Masked Cryptographic Implementations: Information-Theoretic Bounds. 2022 IEEE International Symposium on Information Theory (ISIT). :654—659.
Measuring the information leakage is critical for evaluating the practical security of cryptographic devices against side-channel analysis. Information-theoretic measures can be used (along with Fano’s inequality) to derive upper bounds on the success rate of any possible attack in terms of the number of side-channel measurements. Equivalently, this gives lower bounds on the number of queries for a given success probability of attack. In this paper, we consider cryptographic implementations protected by (first-order) masking schemes, and derive several information-theoretic bounds on the efficiency of any (second-order) attack. The obtained bounds are generic in that they do not depend on a specific attack but only on the leakage and masking models, through the mutual information between side-channel measurements and the secret key. Numerical evaluations confirm that our bounds reflect the practical performance of optimal maximum likelihood attacks.
2017-05-22
de Chérisey, Eloi, Guilley, Sylvain, Rioul, Olivier, Jayasinghe, Darshana.  2016.  Template Attacks with Partial Profiles and Dirichlet Priors: Application to Timing Attacks. Proceedings of the Hardware and Architectural Support for Security and Privacy 2016. :7:1–7:8.

In order to retrieve the secret key in a side-channel attack, the attacker computes distinguisher values using all the available data. A profiling stage is very useful to provide some a priori information about the leakage model. However, profiling is essentially empirical and may not be exhaustive. Therefore, during the attack, the attacker may come up on previously unseen data, which can be troublesome. A lazy workaround is to ignore all such novel observations altogether. In this paper, we show that this is not optimal and can be avoided. Our proposed techniques eventually improve the performance of classical information-theoretic distinguishers in terms of success rate.