Visible to the public Biblio

Filters: Author is Joosen, Wouter  [Clear All Filters]
2023-08-16
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
2023-04-14
Van Goethem, Tom, Joosen, Wouter.  Submitted.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW).
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
2022-12-20
Van Goethem, Tom, Joosen, Wouter.  2022.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW). :20–30.
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
ISSN: 2770-8411
2022-12-02
Liu, Mengyao, Oostvogels, Jonathan, Michiels, Sam, Joosen, Wouter, Hughes, Danny.  2022.  BoboLink: Low Latency and Low Power Communication for Intelligent Environments. 2022 18th International Conference on Intelligent Environments (IE). :1—4.
Intelligent Environments (IEs) enrich the physical world by connecting it to software applications in order to increase user comfort, safety and efficiency. IEs are often supported by wireless networks of smart sensors and actuators, which offer multi-year battery life within small packages. However, existing radio mesh networks suffer from high latency, which precludes their use in many user interface systems such as real-time speech, touch or positioning. While recent advances in optical networks promise low end-to-end latency through symbol-synchronous transmission, current approaches are power hungry and therefore cannot be battery powered. We tackle this problem by introducing BoboLink, a mesh network that delivers low-power and low-latency optical networking through a combination of symbol-synchronous transmission and a novel wake-up technology. BoboLink delivers mesh-wide wake-up in 1.13ms, with a quiescent power consumption of 237µW. This enables building-wide human computer interfaces to be seamlessly delivered using wireless mesh networks for the first time.
2022-05-20
Sion, Laurens, Van Landuyt, Dimitri, Yskout, Koen, Verreydt, Stef, Joosen, Wouter.  2021.  Automated Threat Analysis and Management in a Continuous Integration Pipeline. 2021 IEEE Secure Development Conference (SecDev). :30–37.
Security and privacy threat modeling is commonly applied to systematically identify and address design-level security and privacy concerns in the early stages of architecture and design. Identifying and resolving these threats should remain a continuous concern during the development lifecycle. Especially with contemporary agile development practices, a single-shot upfront analysis becomes quickly outdated. Despite it being explicitly recommended by experts, existing threat modeling approaches focus largely on early development phases and provide limited support during later implementation phases.In this paper, we present an integrated threat analysis toolchain to support automated, continuous threat elicitation, assessment, and mitigation as part of a continuous integration pipeline in the GitLab DevOps platform. This type of automation allows for continuous attention to security and privacy threats during development at the level of individual commits, supports monitoring and managing the progress in addressing security and privacy threats over time, and enables more advanced and fine-grained analyses such as assessing the impact of proposed changes in different code branches or merge/pull requests by analyzing the changes to the threat model.
2020-09-04
Tsingenopoulos, Ilias, Preuveneers, Davy, Joosen, Wouter.  2019.  AutoAttacker: A reinforcement learning approach for black-box adversarial attacks. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :229—237.
Recent research has shown that machine learning models are susceptible to adversarial examples, allowing attackers to trick a machine learning model into making a mistake and producing an incorrect output. Adversarial examples are commonly constructed or discovered by using gradient-based methods that require white-box access to the model. In most real-world AI system deployments, having complete access to the machine learning model is an unrealistic threat model. However, it is possible for an attacker to construct adversarial examples even in the black-box case - where we assume solely a query capability to the model - with a variety of approaches each with its advantages and shortcomings. We introduce AutoAttacker, a novel reinforcement learning framework where agents learn how to operate around the black-box model by querying it, to effectively extract the underlying decision behaviour, and to undermine it successfully. AutoAttacker is a first of kind framework that uses reinforcement learning and assumes nothing about the differentiability or structure of the underlying function and is thus robust towards common defenses like gradient obfuscation or adversarial training. Finally, without differentiable output, as in binary classification, most methods cease to operate and require either an approximation of the gradient, or another approach altogether. Our approach, however, maintains the capability to function when the output descriptiveness diminishes.
2020-03-09
Sion, Laurens, Van Landuyt, Dimitri, Wuyts, Kim, Joosen, Wouter.  2019.  Privacy Risk Assessment for Data Subject-Aware Threat Modeling. 2019 IEEE Security and Privacy Workshops (SPW). :64–71.
Regulatory efforts such as the General Data Protection Regulation (GDPR) embody a notion of privacy risk that is centered around the fundamental rights of data subjects. This is, however, a fundamentally different notion of privacy risk than the one commonly used in threat modeling which is largely agnostic of involved data subjects. This mismatch hampers the applicability of privacy threat modeling approaches such as LINDDUN in a Data Protection by Design (DPbD) context. In this paper, we present a data subject-aware privacy risk assessment model in specific support of privacy threat modeling activities. This model allows the threat modeler to draw upon a more holistic understanding of privacy risk while assessing the relevance of specific privacy threats to the system under design. Additionally, we propose a number of improvements to privacy threat modeling, such as enriching Data Flow Diagram (DFD) system models with appropriate risk inputs (e.g., information on data types and involved data subjects). Incorporation of these risk inputs in DFDs, in combination with a risk estimation approach using Monte Carlo simulations, leads to a more comprehensive assessment of privacy risk. The proposed risk model has been integrated in threat modeling tool prototype and validated in the context of a realistic eHealth application.
2019-08-05
Akkermans, Sven, Crispo, Bruno, Joosen, Wouter, Hughes, Danny.  2018.  Polyglot CerberOS: Resource Security, Interoperability and Multi-Tenancy for IoT Services on a Multilingual Platform. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :59–68.
The Internet of Things (IoT) promises to tackle a range of environmental challenges and deliver large efficiency gains in industry by embedding computational intelligence, sensing and control in our physical environment. Multiple independent parties are increasingly seeking to leverage shared IoT infrastructure, using a similar model to the cloud, and thus require constrained IoT devices to become microservice-hosting platforms that can securely and concurrently execute their code and interoperate. This vision demands that heterogeneous services, peripherals and platforms are provided with an expanded set of security guarantees to prevent third-party services from hijacking the platform, resource-level access control and accounting, and strong isolation between running processes to prevent unauthorized access to third-party services and data. This paper introduces Polyglot CerberOS, a resource-secure operating system for multi-tenant IoT devices that is realised through a reconfigurable virtual machine which can simultaneously execute interoperable services, written in different languages. We evaluate Polyglot CerberOS on IETF Class-1 devices running both Java and C services. The results show that interoperability and strong security guarantees for multilingual services on multi-tenant commodity IoT devices are feasible, in terms of performance and memory overhead, and transparent for developers.
2019-06-17
Sion, Laurens, Yskout, Koen, Van Landuyt, Dimitri, Joosen, Wouter.  2018.  Risk-Based Design Security Analysis. Proceedings of the 1st International Workshop on Security Awareness from Design to Deployment. :11-18.

Implementing security by design in practice often involves the application of threat modeling to elicit security threats and to aid designers in focusing efforts on the most stringent problems first. Existing threat modeling methodologies are capable of generating lots of threats, yet they lack even basic support to triage these threats, except for relying on the expertise and manual assessment by the threat modeler. Since the essence of creating a secure design is to minimize associated risk (and countermeasure costs), risk analysis approaches offer a very compelling solution to this problem. By combining risk analysis and threat modeling, elicited threats in a design can be enriched with risk analysis information in order to provide support in triaging and prioritizing threats and focusing security efforts on the high-risk threats. It requires the following inputs: the asset values, the strengths of countermeasures, and an attacker model. In his paper, we provide an integrated threat elicitation and risk analysis approach, implemented in a threat modeling tool prototype, and evaluate it using a real-world application, namely the SecureDrop whistleblower submission system. We show that the security measures implemented in SecureDrop indeed correspond to the high-risk threats identified by our approach. Therefore, the risk-based security analysis provides useful guidance on focusing security efforts on the most important problems first.

2019-02-13
Sion, Laurens, Yskout, Koen, Van Landuyt, Dimitri, Joosen, Wouter.  2018.  Knowledge-enriched Security and Privacy Threat Modeling. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. :290–291.
Creating secure and privacy-protecting systems entails the simultaneous coordination of development activities along three different yet mutually influencing dimensions: translating (security and privacy) goals to design choices, analyzing the design for threats, and performing a risk analysis of these threats in light of the goals. These activities are often executed in isolation, and such a disconnect impedes the prioritization of elicited threats, assessment which threats are sufficiently mitigated, and decision-making in terms of which risks can be accepted. In the proposed TMaRA approach, we facilitate the simultaneous consideration of these dimensions by integrating support for threat modeling, risk analysis, and design decisions. Key risk assessment inputs are systematically modeled and threat modeling efforts are fed back into the risk management process. This enables prioritizing threats based on their estimated risk, thereby providing decision support in the mitigation, acceptance, or transferral of risk for the system under design.
2018-06-11
Rafique, Ansar, Van Landuyt, Dimitri, Reniers, Vincent, Joosen, Wouter.  2017.  Towards Scalable and Dynamic Data Encryption for Multi-tenant SaaS. Proceedings of the Symposium on Applied Computing. :411–416.
Application-level data management middleware solutions are becoming increasingly compelling to deal with the complexity of a multi-cloud or federated cloud storage and multitenant storage architecture. However, these systems typically support traditional data mapping strategies that are created under the assumption of a fixed and rigorous database schema, and mapping data objects while supporting varying data confidentiality requirements therefore leads to fragmentation of data over distributed storage nodes. This introduces performance over-head at the level of individual database transactions and negatively affects the overall scalability. This paper discusses these challenges and highlights the potential of leveraging the data schema flexibility of NoSQL databases to accomplish dynamic and fine-grained data encryption in a more efficient and scalable manner. We illustrate these ideas in the context of an industrial multi-tenant SaaS application.
Van hamme, Tim, Preuveneers, Davy, Joosen, Wouter.  2017.  A Dynamic Decision Fusion Middleware for Trustworthy Context-aware IoT Applications. Proceedings of the 4th Workshop on Middleware and Applications for the Internet of Things. :1–6.

Internet of Things (IoT) devices offer new sources of contextual information, which can be leveraged by applications to make smart decisions. However, due to the decentralized and heterogeneous nature of such devices - each only having a partial view of their surroundings - there is an inherent risk of uncertain, unreliable and inconsistent observations. This is a serious concern for applications making security related decisions, such as context-aware authentication. We propose and evaluate a middleware for IoT that provides trustworthy context for a collaborative authentication use case. It abstracts a dynamic and distributed fusion scheme that extends the Chair-Varshney (CV) optimal decision fusion rule such that it can be used in a highly dynamic IoT environment. We compare performance and cost trade-offs against regular CV. Experimental evaluation demonstrates that our solution outperforms CV with 10% in a highly dynamic IoT environments, with the ability to detect and mitigate unreliable sensors.

Daniels, Wilfried, Hughes, Danny, Ammar, Mahmoud, Crispo, Bruno, Matthys, Nelson, Joosen, Wouter.  2017.  SΜV - the Security Microvisor: A Virtualisation-based Security Middleware for the Internet of Things. Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Industrial Track. :36–42.
The Internet of Things (IoT) creates value by connecting digital processes to the physical world using embedded sensors, actuators and wireless networks. The IoT is increasingly intertwined with critical industrial processes, yet contemporary IoT devices offer limited security features, creating a large new attack surface and inhibiting the adoption of IoT technologies. Hardware security modules address this problem, however, their use increases the cost of embedded IoT devices. Furthermore, millions of IoT devices are already deployed without hardware security support. This paper addresses this problem by introducing a Security MicroVisor (SμV) middleware, which provides memory isolation and custom security operations using software virtualisation and assembly-level code verification. We showcase SμV by implementing a key security feature: remote attestation. Evaluation shows extremely low overhead in terms of memory, performance and battery lifetime for a representative IoT device.
2017-09-05
Preuveneers, Davy, Joosen, Wouter.  2016.  Privacy-enabled Remote Health Monitoring Applications for Resource Constrained Wearable Devices. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :119–124.

Recent computing paradigms like cloud computing and big data have become very appealing to outsource computation and storage, making it easier to realize personalized and patient centric healthcare through real-time analytics on user data. Although these technologies can significantly complement resource constrained mobile and wearable devices to store and process personal health information, privacy concerns are keeping patients from reaping the full benefits. In this paper, we present and evaluate a practical smart-watch based lifelog application for diabetics that leverages the cloud and homomorphic encryption for caregivers to analyze blood glucose, insulin values, and other parameters in a privacy friendly manner to ensure confidentiality such that even a curious cloud service provider remains oblivious of sensitive health data.

2017-08-18
Sion, Laurens, Van Landuyt, Dimitri, Yskout, Koen, Joosen, Wouter.  2016.  Towards Systematically Addressing Security Variability in Software Product Lines. Proceedings of the 20th International Systems and Software Product Line Conference. :342–343.

With the increasingly pervasive role of software in society, security is becoming an important quality concern, emphasizing security by design, but it requires intensive specialization. Security in families of systems is even harder, as diverse variants of security solutions must be considered, with even different security goals per product. Furthermore, security is not a static object but a moving target, adding variability. For this, an approach to systematically address security concerns in software product lines is needed. It should consider security separate from other variability dimensions. The main challenges to realize this are: (i) expressing security and its variability, (ii) selecting the right solution, (iii) properly instantiating a solution, and (iv) verifying and validating it. In this paper, we present our research agenda towards addressing the aforementioned challenges.

2017-06-05
Hovsepyan, Aram, Scandariato, Riccardo, Joosen, Wouter.  2016.  Is Newer Always Better?: The Case of Vulnerability Prediction Models Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. :26:1–26:6.

Finding security vulnerabilities in the source code as early as possible is becoming more and more essential. In this respect, vulnerability prediction models have the potential to help the security assurance activities by identifying code locations that deserve the most attention. In this paper, we investigate whether prediction models behave like milk (i.e., they turn with time) or wine (i.e., the improve with time) when used to predict future vulnerabilities. Our findings indicate that the recall values are largely in favor of predictors based on older versions. However, the better recall comes at the price of much higher file inspection ratio values.