Biblio
Internet of Things (IoT) devices offer new sources of contextual information, which can be leveraged by applications to make smart decisions. However, due to the decentralized and heterogeneous nature of such devices - each only having a partial view of their surroundings - there is an inherent risk of uncertain, unreliable and inconsistent observations. This is a serious concern for applications making security related decisions, such as context-aware authentication. We propose and evaluate a middleware for IoT that provides trustworthy context for a collaborative authentication use case. It abstracts a dynamic and distributed fusion scheme that extends the Chair-Varshney (CV) optimal decision fusion rule such that it can be used in a highly dynamic IoT environment. We compare performance and cost trade-offs against regular CV. Experimental evaluation demonstrates that our solution outperforms CV with 10% in a highly dynamic IoT environments, with the ability to detect and mitigate unreliable sensors.
Recent computing paradigms like cloud computing and big data have become very appealing to outsource computation and storage, making it easier to realize personalized and patient centric healthcare through real-time analytics on user data. Although these technologies can significantly complement resource constrained mobile and wearable devices to store and process personal health information, privacy concerns are keeping patients from reaping the full benefits. In this paper, we present and evaluate a practical smart-watch based lifelog application for diabetics that leverages the cloud and homomorphic encryption for caregivers to analyze blood glucose, insulin values, and other parameters in a privacy friendly manner to ensure confidentiality such that even a curious cloud service provider remains oblivious of sensitive health data.