Biblio
Steganography is the science of hiding data within data. Either for the good purpose of secret communication or for the bad intention of leaking sensitive confidential data or embedding malicious code or URL. However, many different carrier file formats can be used to hide these data (network, audio, image..etc) but the most common steganography carrier is embedding secret data within images as it is considered to be the best and easiest way to hide all types of files (secret files) within an image using different formats (another image, text, video, virus, URL..etc). To the human eye, the changes in the image appearance with the hidden data can be imperceptible. In fact, images can be more than what we see with our eyes. Therefore, many solutions where proposed to help in detecting these hidden data but each solution have their own strong and weak points either by the limitation of resolving one type of image along with specific hiding technique and or most likely without extracting the hidden data. This paper intends to propose a novel detection approach that will concentrate on detecting any kind of hidden URL in all types of images and extract the hidden URL from the carrier image that used the LSB least significant bit hiding technique.
Providing a global understanding of privacy is crucial, because everything is connected. Nowadays companies are providing their customers with more services that will give them more access to their data and daily activity; electricity companies are marketing the new smart meters as a new service with great benefit to reduce the electricity usage by monitoring the electricity reading in real time. Although the users might benefit from this extra service, it will compromise the privacy of the users by having constant access to the readings. Since the smart meters will provide the users with real electricity readings, they will be able to decide and identify which devices are consuming energy in that specific moment and how much it will cost. This kind of information can be exploited by numerous types of people. Unauthorized use of this information is an invasion of privacy and may lead to much more severe consequences. This paper will propose an algorithm approach for the comparison and analysis of Smart Meter data readings, considering the time and temperature factors at each second to identify the use patterns at each house by identifying the appliances activities at each second in time complexity O(log(m)).