Visible to the public Biblio

Filters: Author is Prakash, A.  [Clear All Filters]
2020-12-15
Prakash, A., Walambe, R..  2018.  Military Surveillance Robot Implementation Using Robot Operating System. 2018 IEEE Punecon. :1—5.

Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.

2019-02-13
Prakash, A., Priyadarshini, R..  2018.  An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :585–589.

Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.

2015-04-30
Yufei Gu, Yangchun Fu, Prakash, A., Zhiqiang Lin, Heng Yin.  2014.  Multi-Aspect, Robust, and Memory Exclusive Guest OS Fingerprinting. Cloud Computing, IEEE Transactions on. 2:380-394.

Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-SOMMELIER+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-SOMMELIER+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels.