Visible to the public Biblio

Filters: Author is Breslin, John G.  [Clear All Filters]
2023-03-31
Soderi, Mirco, Kamath, Vignesh, Breslin, John G..  2022.  A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340
2022-03-23
Shukla, Saurabh, Thakur, Subhasis, Breslin, John G..  2021.  Secure Communication in Smart Meters using Elliptic Curve Cryptography and Digital Signature Algorithm. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :261—266.
With the advancement in the growth of Internet-of-Things (IoT), its number of applications has also increased such as in healthcare, smart cities, vehicles, industries, household appliances, and Smart Grids (SG). One of the major applications of IoT is the SG and smart meter which consists of a large number of internet-connected sensors and can communicate bi-directionally in real-time. The SG network involves smart meters, data collectors, generators, and sensors connected with the internet. SG networks involve the generation, distribution, transmission, and consumption of electrical power supplies. It consists of Household Area Network (HAN), and Neighborhood Area Network (NAN) for communication. Smart meters can communicate bidirectionally with consumers and provide real-time information to utility offices. But this communication channel is a wide-open network for data transmission. Therefore, it makes the SG network and smart meter vulnerable to outside hacker and various Cyber-Physical System (CPS) attacks such as False Data Injection (FDI), inserting malicious data, erroneous data, manipulating the sensor reading values. Here cryptography techniques can play a major role along with the private blockchain model for secure data transmission in smart meters. Hence, to overcome these existing issues and challenges in smart meter communication we have proposed a blockchain-based system model for secure communication along with a novel Advanced Elliptic Curve Cryptography Digital Signature (AECCDS) algorithm in Fog Computing (FC) environment. Here FC nodes will work as miners at the edge of smart meters for secure and real-time communication. The algorithm is implemented using iFogSim, Geth version 1.9.25, Ganache, Truffle for compiling smart contracts, Anaconda (Python editor), and ATOM as language editor for the smart contracts.
2021-10-04
Thakur, Subhasis, Breslin, John G..  2020.  Real-time Peer to Peer Energy Trade with Blockchain Offline Channels. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
Blockchain become a suitable platform for peer to peer energy trade as it facilitates secure interactions among parties with trust or a mutual trusted 3rd party. However, the scalability issue of blockchains is a problem for real-time energy trade to be completed within a small time duration. In this paper, we use offline channels for blockchains to circumvent scalability problems of blockchains for peer to peer energy trade with small trade duration. We develop algorithms to find stable coalitions for energy trade using blockchain offline channels. We prove that our solution is secure against adversarial prosumer behaviors, it supports real-time trade as the algorithm is guaranteed to find and record stable coalitions before a fixed time, and the coalition structure generated by the algorithm is efficient.
2017-08-02
Piao, Guangyuan, Breslin, John G..  2016.  User Modeling on Twitter with WordNet Synsets and DBpedia Concepts for Personalized Recommendations. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2057–2060.

User modeling of individual users on the Social Web platforms such as Twitter plays a significant role in providing personalized recommendations and filtering interesting information from social streams. Recently, researchers proposed the use of concepts (e.g., DBpedia entities) for representing user interests instead of word-based approaches, since Knowledge Bases such as DBpedia provide cross-domain background knowledge about concepts, and thus can be used for extending user interest profiles. Even so, not all concepts can be covered by a Knowledge Base, especially in the case of microblogging platforms such as Twitter where new concepts/topics emerge everyday. In this short paper, instead of using concepts alone, we propose using synsets from WordNet and concepts from DBpedia for representing user interests. We evaluate our proposed user modeling strategies by comparing them with other bag-of-concepts approaches. The results show that using synsets and concepts together for representing user interests improves the quality of user modeling significantly in the context of link recommendations on Twitter.