Biblio
As a proposed Internet architecture, Named Data Networking must provide effective security support: data authenticity, confidentiality, and availability. This poster focuses on supporting data confidentiality via encryption. The main challenge is to provide an easy-to-use key management mechanism that ensures only authorized parties are given the access to protected data. We describe the design of name-based access control (NAC) which provides automated key management by developing systematic naming conventions for both data and cryptographic keys. We also discuss an enhanced version of NAC that leverages attribute-based encryption mechanisms (NAC-ABE) to improve the flexibility of data access control and reduce communication, storage, and processing overheads.
The World Wide Web has become the most common platform for building applications and delivering content. Yet despite years of research, the web continues to face severe security challenges related to data integrity and confidentiality. Rather than continuing the exploit-and-patch cycle, we propose addressing these challenges at an architectural level, by supplementing the web's existing connection-based and server-based security models with a new approach: content-based security. With this approach, content is directly signed and encrypted at rest, enabling it to be delivered via any path and then validated by the browser. We explore how this new architectural approach can be applied to the web and analyze its security benefits. We then discuss a broad research agenda to realize this vision and the challenges that must be overcome.
The World Wide Web has become the most common platform for building applications and delivering content. Yet despite years of research, the web continues to face severe security challenges related to data integrity and confidentiality. Rather than continuing the exploit-and-patch cycle, we propose addressing these challenges at an architectural level, by supplementing the web's existing connection-based and server-based security models with a new approach: content-based security. With this approach, content is directly signed and encrypted at rest, enabling it to be delivered via any path and then validated by the browser. We explore how this new architectural approach can be applied to the web and analyze its security benefits. We then discuss a broad research agenda to realize this vision and the challenges that must be overcome.