Visible to the public Biblio

Filters: Keyword is FPGA implementation  [Clear All Filters]
2023-03-03
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2021-01-22
Bouteghrine, B., Rabiai, M., Tanougast, C., Sadoudi, S..  2019.  FPGA Implementation of Internet Key Exchange Based on Chaotic Cryptosystem. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:384–387.

In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.

2020-09-08
Bouteghrine, Belqassim, Rabiai, Mohammed, Tanougast, Camel, Sadoudi, Said.  2019.  FPGA Implementation of Internet Key Exchange Based on Chaotic Cryptosystem. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:384–387.
In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.
2015-05-06
Jae Min Cho, Kiyoung Choi.  2014.  An FPGA implementation of high-throughput key-value store using Bloom filter. VLSI Design, Automation and Test (VLSI-DAT), 2014 International Symposium on. :1-4.

This paper presents an efficient implementation of key-value store using Bloom filters on FPGA. Bloom filters are used to reduce the number of unnecessary accesses to the hash tables, thereby improving the performance. Additionally, for better hash table utilization, we use a modified cuckoo hashing algorithm for the implementation. They are implemented in FPGA to further improve the performance. Experimental results show significant performance improvement over existing approaches.