Visible to the public Biblio

Filters: Author is Tanougast, C.  [Clear All Filters]
2021-01-22
Bouteghrine, B., Rabiai, M., Tanougast, C., Sadoudi, S..  2019.  FPGA Implementation of Internet Key Exchange Based on Chaotic Cryptosystem. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:384–387.

In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.

2019-03-22
Azzaz, M. S., Tanougast, C., Maali, A., Benssalah, M..  2018.  Hardware Implementation of Multi-Scroll Chaos Based Architecture for Securing Biometric Templates. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :227-231.

In spite of numerous advantages of biometrics-based personal authentication systems over traditional security systems based on token or knowledge, they are vulnerable to attacks that can decrease their security considerably. In this paper, we propose a new hardware solution to protect biometric templates such as fingerprint. The proposed scheme is based on chaotic N × N grid multi-scroll system and it is implemented on Xilinx FPGA. The hardware implementation is achieved by applying numerical solution methods in our study, we use EM (Euler Method). Simulation and experimental results show that the proposed scheme allows a low cost image encryption for embedded systems while still providing a good trade-off between performance and hardware resources. Indeed, security analysis performed to the our scheme, is strong against known different attacks, such as: brute force, statistical, differential, and entropy. Therefore, the proposed chaos-based multiscroll encryption algorithm is suitable for use in securing embedded biometric systems.