Visible to the public Biblio

Filters: Keyword is content-addressable storage  [Clear All Filters]
2021-02-23
Zheng, L., Jiang, J., Pan, W., Liu, H..  2020.  High-Performance and Range-Supported Packet Classification Algorithm for Network Security Systems in SDN. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
Packet classification is a key function in network security systems in SDN, which detect potential threats by matching the packet header bits and a given rule set. It needs to support multi-dimensional fields, large rule sets, and high throughput. Bit Vector-based packet classification methods can support multi-field matching and achieve a very high throughput, However, the range matching is still challenging. To address issue, this paper proposes a Range Supported Bit Vector (RSBV) algorithm for processing the range fields. RSBV uses specially designed codes to store the pre-computed results in memory, and the result of range matching is derived through pipelined Boolean operations. Through a two-dimensional modular architecture, the RSBV can operate at a high clock frequency and line-rate processing can be guaranteed. Experimental results show that for a 1K and 512-bit OpenFlow rule set, the RSBV can sustain a throughput of 520 Million Packets Per Second.
2017-02-21
M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, M. K. Reiter.  2015.  "Caesar: high-speed and memory-efficient forwarding engine for future internet architecture". 2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :171-182.

In response to the critical challenges of the current Internet architecture and its protocols, a set of so-called clean slate designs has been proposed. Common among them is an addressing scheme that separates location and identity with self-certifying, flat and non-aggregatable address components. Each component is long, reaching a few kilobits, and would consume an amount of fast memory in data plane devices (e.g., routers) that is far beyond existing capacities. To address this challenge, we present Caesar, a high-speed and length-agnostic forwarding engine for future border routers, performing most of the lookups within three fast memory accesses. To compress forwarding states, Caesar constructs scalable and reliable Bloom filters in Ternary Content Addressable Memory (TCAM). To guarantee correctness, Caesar detects false positives at high speed and develops a blacklisting approach to handling them. In addition, we optimize our design by introducing a hashing scheme that reduces the number of hash computations from k to log(k) per lookup based on hash coding theory. We handle routing updates while keeping filters highly utilized in address removals. We perform extensive analysis and simulations using real traffic and routing traces to demonstrate the benefits of our design. Our evaluation shows that Caesar is more energy-efficient and less expensive (in terms of total cost) compared to optimized IPv6 TCAM-based solutions by up to 67% and 43% respectively. In addition, the total cost of our design is approximately the same for various address lengths.

2015-05-06
Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, Chao, H.J..  2014.  High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables. Networking, IEEE/ACM Transactions on. 22:982-995.

The emergence of new network applications, such as the network intrusion detection system and packet-level accounting, requires packet classification to report all matched rules instead of only the best matched rule. Although several schemes have been proposed recently to address the multimatch packet classification problem, most of them require either huge memory or expensive ternary content addressable memory (TCAM) to store the intermediate data structure, or they suffer from steep performance degradation under certain types of classifiers. In this paper, we decompose the operation of multimatch packet classification from the complicated multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstage parallel access to hash tables. To exploit further intrastage parallelism, two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-conserving hash tables. To avoid collisions involved in hash table lookup, a hybrid perfect hash table construction scheme is proposed. Extensive simulation using realistic classifiers and traffic traces shows that the proposed pipeline architecture outperforms HyperCuts and B2PC schemes in classification speed by at least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 Gb/s using perfect hash tables.