Visible to the public Biblio

Filters: Keyword is Memory  [Clear All Filters]
2023-09-08
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
2023-08-17
Saragih, Taruly Karlina, Tanuwijaya, Eric, Wang, Gunawan.  2022.  The Use of Blockchain for Digital Identity Management in Healthcare. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1—6.
Digitalization has occurred in almost all industries, one of them is health industry. Patients” medical records are now easier to be accessed and managed as all related data are stored in data storages or repositories. However, this system is still under development as number of patients still increasing. Lack of standardization might lead to patients losing their right to control their own data. Therefore, implementing private blockchain system with Self-Sovereign Identity (SSI) concept for identity management in health industry is a viable notion. With SSI, the patients will be benefited from having control over their own medical records and stored with higher security protocol. While healthcare providers will benefit in Know You Customer (KYC) process, if they handle new patients, who move from other healthcare providers. It will eliminate and shorten the process of updating patients' medical records from previous healthcare providers. Therefore, we suggest several flows in implementing blockchain for digital identity in healthcare industry to help overcome lack of patient's data control and KYC in current system. Nevertheless, implementing blockchain on health industry requires full attention from surrounding system and stakeholders to be realized.
2023-08-11
Kumar, A Vijaya, Bhavana, Kollipara, Yamini, Cheedella.  2022.  Fully Homomorphic Encryption for Data Security Over Cloud. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :782—787.
From the past few years cloud services are so popular and are being used by many people from various domains for various purposes such as data storage, e-mails, backing up data and much more. While there were many options to perform such things why did people choose cloud? The answer is clouds are more flexible, convenient, reliable and efficient. Coming to security of data over cloud, it is secure to store data over cloud rather than storing data locally as there is chance of some computer breakdown or any natural disaster may also occur. There are also many threats for data security over cloud namely data breaching, lack of access-key management and much more. As the data has been processed and being stored online for various purposes, there is a clear requirement for data security. Many organizations face various challenges while storing their data over cloud such as data leakages, account hijacking, insufficient credentials and so on. So to overcome these challenges and safeguard the data, various encryption techniques were implemented. However, even though encryption is used, the data still needs to be decrypted in order to do any type of operation. As a result, we must choose a manner in which the data can be analyzed, searched for, or used in any other way without needing to be decoded. So, the objective is to introduce a technique that goes right for the above conditions mentioned and for data security over cloud.
Zhang, Jie.  2022.  Design of Portable Sensor Data Storage System Based on Homomorphic Encryption Algorithm. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—4.
With the development of sensor technology, people put forward a higher level, more diversified demand for portable rangefinders. However, its data storage method has not been developed in a large scale and breakthrough. This paper studies the design of portable sensor data storage system based on homomorphic encryption algorithm, which aims to maintain the security of sensor data storage through homomorphic encryption algorithm. This paper analyzes the functional requirements of the sensor data storage system, puts forward the overall design scheme of the system, and explains in detail the requirements and indicators for the specific realization of each part of the function. Analyze the different technical resources currently used in the storage system field, and dig deep into the key technologies that match the portable sensor data storage system. This paper has changed the problem of cumbersome operation steps and inconvenient data recovery in the sensor data storage system. This paper mainly uses the method of control variables and data comparison to carry out the experiment. The experimental results show that the success rate of the sensor data storage system under the homomorphic encryption algorithm is infinitely close to 100% as the number of data blocks increases.
Temirbekova, Zhanerke, Pyrkova, Anna, Abdiakhmetova, Zukhra, Berdaly, Aidana.  2022.  Library of Fully Homomorphic Encryption on a Microcontroller. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—5.
Fully homomorphic encryption technologies allow you to operate on encrypted data without disclosing it, therefore they have a lot of potential for solving personal data storage and processing issues. Because of the increased interest in these technologies, various software tools and libraries that allow completely homomorphic encryption have emerged. However, because this subject of cryptography is still in its early stages, standards and recommendations for the usage of completely homomorphic encryption algorithms are still being developed. The paper presents the main areas of application of homomorphic encryption. The analysis of existing developments in the field of homomorphic encryption is carried out. The analysis showed that existing library implementations do not support the division and subtraction operation. The analysis revealed the need to develop a library of fully homomorphic encryption, which allows performing all mathematical operations on them (addition, difference, multiplication and division), as well as the relevance of developing its own implementation of a library of homomorphic encryption on integers. Then, implement the development of a fully homomorphic encryption library in C++ and on an ESP 32 microcontroller. The ability to perform four operations (addition, difference, multiplication and division) on encrypted data will expand the scope of application of homomorphic encryption. A method of homomorphic division and subtraction is proposed that allows performing the division and subtraction operation on homomorphically encrypted data. The level of security, the types of operations executed, the maximum length of operands, and the algorithm's running time are all described as a consequence of numerical experimentation with parameters.
2023-07-21
Hamzah, Anwer Sattar, Abdul-Rahaim, Laith Ali.  2022.  Smart Homes Automation System Using Cloud Computing Based Enhancement Security. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :164—169.
Smart home automation is one of the prominent topics of the current era, which has attracted the attention of researchers for several years due to smart home automation contributes to achieving many capabilities, which have had a real and vital impact on our daily lives, such as comfort, energy conservation, environment, and security. Home security is one of the most important of these capabilities. Many efforts have been made on research and articles that focus on this area due to the increased rate of crime and theft. The present paper aims to build a practically implemented smart home that enhances home control management and monitors all home entrances that are often vulnerable to intrusion by intruders and thieves. The proposed system depends on identifying the person using the face detection and recognition method and Radio Frequency Identification (RFID) as a mechanism to enhance the performance of home security systems. The cloud server analyzes the received member identification to retrieve the permission to enter the home. The system showed effectiveness and speed of response in transmitting live captures of any illegal intrusive activity at the door or windows of the house. With the growth and expansion of the concept of smart homes, the amount of information transmitted, information security weakness, and response time disturbances, to reduce latency, data storage, and maintain information security, by employing Fog computing architecture in smart homes as a broker between the IoT layer and the cloud servers and the user layer.
2023-07-13
Kumar, Aytha Ramesh, Sharmila, Yadavalli.  2022.  FPGA Implementation of High Performance Hybrid Encryption Standard. 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC). :103–107.
Now a day's data hacking is the main issue for cloud computing, protecting a data there are so many methods in that one most usable method is the data Encryption. Process of Encryption is the converting a data into an un readable form using encryption key, encoded version that can only be read with authorized access to the decryption key. This paper presenting a simple, energy and area efficient method for endurance issue in secure resistive main memories. In this method, by employing the random characteristics of the encrypted data encoded by the Advanced Encryption Standard (AES) as well as a rotational shift operation. Random Shifter is simple hardware implementation and energy efficient method. It is considerably smaller than that of other recently proposed methods. Random Shifter technique used for secure memory with other error correction methods. Due to their reprogram ability, Field Programmable Gate Arrays (FPGA) are a popular choice for the hardware implementation of cryptographic algorithms. The proposed random shifter algorithm for AES and DES (Hybrid) data is implemented in the VIRTEX FPGA and it is efficient and suitable for hardware-critical applications. This Paper is implemented using model sim and Xilinx 14.5 version.
2023-06-16
Haifeng, Ma, Ji, Zhang.  2022.  Block-chain based cloud storage integrity verifycation scheme for recoverable data. 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS). 7:280—285.
With the advent of the era of big data, the files that need to be stored in the storage system will increase exponentially. Cloud storage has become the most popular data storage method due to its powerful convenience and storage capacity. However, in order to save costs, some cloud service providers, Malicious deletion of the user's infrequently accessed data causes the user to suffer losses. Aiming at data integrity and privacy issues, a blockchain-based cloud storage integrity verification scheme for recoverable data is proposed. The scheme uses the Merkle tree properties, anonymity, immutability and smart contracts of the blockchain to effectively solve the problems of cloud storage integrity verification and data damage recovery, and has been tested and analyzed that the scheme is safe and effective.
Yue, Zhengyu, Yao, Yuanzhi, Li, Weihai, Yu, Nenghai.  2022.  ATDD: Fine-Grained Assured Time-Sensitive Data Deletion Scheme in Cloud Storage. ICC 2022 - IEEE International Conference on Communications. :3448—3453.
With the rapid development of general cloud services, more and more individuals or collectives use cloud platforms to store data. Assured data deletion deserves investigation in cloud storage. In time-sensitive data storage scenarios, it is necessary for cloud platforms to automatically destroy data after the data owner-specified expiration time. Therefore, assured time-sensitive data deletion should be sought. In this paper, a fine-grained assured time-sensitive data deletion (ATDD) scheme in cloud storage is proposed by embedding the time trapdoor in Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Time-sensitive data is self-destructed after the data owner-specified expiration time so that the authorized users cannot get access to the related data. In addition, a credential is returned to the data owner for data deletion verification. This proposed scheme provides solutions for fine-grained access control and verifiable data self-destruction. Detailed security and performance analysis demonstrate the security and the practicability of the proposed scheme.
2023-03-31
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.  2022.  Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.
2023-02-17
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
Khan, Shahnawaz, Yusuf, Ammar, Haider, Mohammad, Thirunavukkarasu, K., Nand, Parma, Imam Rahmani, Mohammad Khalid.  2022.  A Review of Android and iOS Operating System Security. 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). :67–72.
Mobile devices are an inseparable part of our lives. They have made it possible to access all the information and services anywhere at any time. Almost all of the organizations try to provide a mobile device-based solution to its users. However, this convenience has arisen the risk of losing personal information and has increased the threat to security. It has been observed recently that some of the mobile device manufacturers and mobile apps developers have lost the private information of their users to hackers. It has risen a great concern among mobile device users about their personal information. Android and iOS are the major operating systems for mobile devices and share over 99% of the mobile device market. This research aims to conduct a comparative analysis of the security of the components in the Android and iOS operating systems. It analyses the security from several perspectives such as memory randomization, application sandboxing, isolation, encryption, built-in antivirus, and data storage. From the analysis, it is evident that iOS is more secure than Android operating system. However, this security comes with a cost of losing the freedom.
2023-02-13
Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.

2023-01-20
Raptis, Theofanis P., Cicconetti, Claudio, Falelakis, Manolis, Kanellos, Tassos, Lobo, Tomás Pariente.  2022.  Design Guidelines for Apache Kafka Driven Data Management and Distribution in Smart Cities. 2022 IEEE International Smart Cities Conference (ISC2). :1–7.
Smart city management is going through a remarkable transition, in terms of quality and diversity of services provided to the end-users. The stakeholders that deliver pervasive applications are now able to address fundamental challenges in the big data value chain, from data acquisition, data analysis and processing, data storage and curation, and data visualisation in real scenarios. Industry 4.0 is pushing this trend forward, demanding for servitization of products and data, also for the smart cities sector where humans, sensors and devices are operating in strict collaboration. The data produced by the ubiquitous devices must be processed quickly to allow the implementation of reactive services such as situational awareness, video surveillance and geo-localization, while always ensuring the safety and privacy of involved citizens. This paper proposes a modular architecture to (i) leverage innovative technologies for data acquisition, management and distribution (such as Apache Kafka and Apache NiFi), (ii) develop a multi-layer engineering solution for revealing valuable and hidden societal knowledge in smart cities environment, and (iii) tackle the main issues in tasks involving complex data flows and provide general guidelines to solve them. We derived some guidelines from an experimental setting performed together with leading industrial technical departments to accomplish an efficient system for monitoring and servitization of smart city assets, with a scalable platform that confirms its usefulness in numerous smart city use cases with different needs.
2022-12-20
Hariharan, Meenu, Thakar, Akash, Sharma, Parvesh.  2022.  Forensic Analysis of Private Mode Browsing Artifacts in Portable Web Browsers Using Memory Forensics. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–5.
The popularity of portable web browsers is increasing due to its convenient and compact nature along with the benefit of the data being stored and transferred easily using a USB drive. As technology gets updated frequently, developers are working on web browsers that can be portable in nature with additional security features like private mode browsing, built in ad blockers etc. The increased probability of using portable web browsers for carrying out nefarious activities is a result of cybercriminals with the thought that if they use portable web browsers in private mode it won't leave a digital footprint. Hence, the research paper aims at performing a comparative study of four portable web browsers namely Brave, TOR, Vivaldi, and Maxthon along with various memory acquisition tools to understand the quantity and quality of the data that can be recovered from the memory dump in two different conditions that is when the browser tabs were open and when the browser tabs were closed in a system to aid the forensic investigators.
2022-12-01
Fei, Song, Yuanbing, Shi, Minghao, Huang.  2020.  A Method of Industrial Internet Entity Mutual Trust Combining PKI and IBE Technology System. 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD). :304–308.
The industrial Internet has built a new industrial manufacturing and service system with all elements, all industrial chains and all value chains connected through the interconnection of people, machines and things. It breaks the relatively closed and credible production environment of traditional industry. But at the same time, the full interconnection of cross-device, cross-system, and cross-region in the industrial Internet also brings a certain network trust crisis. The method proposed in this paper breaking the relatively closed manufacturing environment of traditional industries, extends the network connection object from human to machine equipment, industrial products and industrial services. It provides a safe and credible environment for the development of industrial Internet, and a trust guarantee for the across enterprises entities and data sharing.
2022-11-18
Li, Shuang, Zhang, Meng, Li, Che, Zhou, Yue, Wang, Kanghui, Deng, Yaru.  2021.  Mobile APP Personal Information Security Detection and Analysis. 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS). :82—87.
Privacy protection is a vital part of information security. However, the excessive collections and uses of personal information have intensified in the area of mobile apps (applications). To comprehend the current situation of APP personal information security problem of APP, this paper uses a combined approach of static analysis technology, dynamic analysis technology, and manual review to detect and analyze the installed file of mobile apps. 40 mobile apps are detected as experimental samples. The results demonstrate that this combined approach can effectively detect various issues of personal information security problem in mobile apps. Statistics analysis of the experimental results demonstrate that mobile apps have outstanding problems in some aspects of personal information security such as privacy policy, permission application, information collection, data storage, etc.
2022-09-20
Samy, Salma, Banawan, Karim, Azab, Mohamed, Rizk, Mohamed.  2021.  Smart Blockchain-based Control-data Protection Framework for Trustworthy Smart Grid Operations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0963—0969.
The critical nature of smart grids (SGs) attracts various network attacks and malicious manipulations. Existent SG solutions are less capable of ensuring secure and trustworthy operation. This is due to the large-scale nature of SGs and reliance on network protocols for trust management. A particular example of such severe attacks is the false data injection (FDI). FDI refers to a network attack, where meters' measurements are manipulated before being reported in such a way that the energy system takes flawed decisions. In this paper, we exploit the secure nature of blockchains to construct a data management framework based on public blockchain. Our framework enables trustworthy data storage, verification, and exchange between SG components and decision-makers. Our proposed system enables miners to invest their computational power to verify blockchain transactions in a fully distributed manner. The mining logic employs machine learning (ML) techniques to identify the locations of compromised meters in the network, which are responsible for generating FDI attacks. In return, miners receive virtual credit, which may be used to pay their electric bills. Our design circumvents single points of failure and intentional FDI attempts. Our numerical results compare the accuracy of three different ML-based mining logic techniques in two scenarios: focused and distributed FDI attacks for different attack levels. Finally, we proposed a majority-decision mining technique for the practical case of an unknown FDI attack level.
2022-09-09
Hadi, Ameer Khadim, Salem, Shahad.  2021.  A proposed methodology to use a Block-chain in Supply Chain Traceability. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :313—317.

Increasing consumer experience and companies inner quality presents a direct demand of different requirements on supply chain traceability. Typically, existing solutions have separate data storages which eventually provide limited support when multiple individuals are included. Therefore, the block-chain-based methods are utilized to defeat these deficiencies by generating digital illustrations of real products to following several objects at the same time. Nevertheless, they actually cannot identify the change of products in manufacturing methods. The connection between components included in the production decreased, whereby the ability to follow a product’s origin reduced consequently. In this paper, a methodology is recommended which involves using a Block-chain in Supply Chain Traceability, to solve the issues of manipulations and changes in data and product source. The method aims to improve the product’s origin transparency. Block-chain technology produces a specific method of storing data into a ledger, which is raised on many end-devices such as servers or computers. Unlike centralized systems, the records of the present system are encrypted and make it difficult to be manipulated. Accordingly, this method manages the product’s traceability changes. The recommended system is performed for the cheese supply chain. The result were found to be significant in terms of increasing food security and distributors competition.

Wei, Yihang.  2020.  Blockchain-based Data Traceability Platform Architecture for Supply Chain Management. :77—85.
{With the rapid development of economic globalization, cooperation between countries, between enterprises, has become a key factor whether country and enterprises can make great economic progress. In these cooperation processes, it is necessary to trace the source of business data or log data for auditing and accountability. However, multi-party enterprises participating in cooperation often do not trust each other, and the separate accounting of the enterprises leads to isolated islands of information, which makes it difficult to trace the entire life cycle of the data. Therefore, there is an urgent need for a mechanism that can establish distributed trustworthiness among multiparty organizations that do not trust each other, and provide a tamper-resistant data storage mechanism to achieve credible traceability of data. This work proposes a data traceability platform architecture design plan for supply chain management based on the multi-disciplinary knowledge and technology of the Fabric Alliance chain architecture, perceptual identification technology, and cryptographic knowledge. At the end of the paper, the characteristics and shortcomings of data traceability of this scheme are evaluated.
2022-08-12
Zhu, Jinhui, Chen, Liangdong, Liu, Xiantong, Zhao, Lincong, Shen, Peipei, Chen, Jinghan.  2021.  Trusted Model Based on Multi-dimensional Attributes in Edge Computing. 2021 2nd Asia Symposium on Signal Processing (ASSP). :95—100.
As a supplement to the cloud computing model, the edge computing model can use edge servers and edge devices to coordinate information processing on the edge of the network to help Internet of Thing (IoT) data storage, transmission, and computing tasks. In view of the complex and changeable situation of edge computing IoT scenarios, this paper proposes a multi-dimensional trust evaluation factor selection scheme. Improve the traditional trusted modeling method based on direct/indirect trust, introduce multi-dimensional trusted decision attributes and rely on the collaboration of edge servers and edge device nodes to infer and quantify the trusted relationship between nodes, and combine the information entropy theory to smoothly weight the calculation results of multi-dimensional decision attributes. Improving the current situation where the traditional trusted assessment scheme's dynamic adaptability to the environment and the lack of reliability of trusted assessment are relatively lacking. Simulation experiments show that the edge computing IoT multi-dimensional trust evaluation model proposed in this paper has better performance than the trusted model in related literature.
2022-06-14
Qureshi, Hifza, Sagar, Anil Kumar, Astya, Rani, Shrivastava, Gulshan.  2021.  Big Data Analytics for Smart Education. 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). :650–658.
The existing education system, which incorporates school assessments, has some flaws. Conventional teaching methods give students no immediate feedback, also make teachers to spend hours grading repetitive assignments, and aren't very constructive in showing students how to improve in their academics, and also fail to take advantage of digital opportunities that can improve learning outcomes. In addition, since a single teacher has to manage a class of students, it gets difficult to focus on each and every student in the class. Furthermore, with the help of a management system for better learning, educational organizations can now implement administrative analytics and execute new business intelligence using big data. This data visualization aids in the evaluation of teaching, management, and study success metrics. In this paper, there is put forward a discussion on how Data Mining and Data Analytics can help make the experience of learning and teaching both, easier and accountable. There will also be discussion on how the education organization has undergone numerous challenges in terms of effective and efficient teachings, student-performance. In addition development, and inadequate data storage, processing, and analysis will also be discussed. The research implements Python programming language on big education data. In addition, the research adopted an exploratory research design to identify the complexities and requirements of big data in the education field.