Visible to the public Biblio

Filters: Keyword is Android malware  [Clear All Filters]
2023-09-20
Haidros Rahima Manzil, Hashida, Naik S, Manohar.  2022.  DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—6.
Android malware is continuously evolving at an alarming rate due to the growing vulnerabilities. This demands more effective malware detection methods. This paper presents DynaMalDroid, a dynamic analysis-based framework to detect malicious applications in the Android platform. The proposed framework contains three modules: dynamic analysis, feature engineering, and detection. We utilized the well-known CICMalDroid2020 dataset, and the system calls of apps are extracted through dynamic analysis. We trained our proposed model to recognize malware by selecting features obtained through the feature engineering module. Further, with these selected features, the detection module applies different Machine Learning classifiers like Random Forest, Decision Tree, Logistic Regression, Support Vector Machine, Naïve-Bayes, K-Nearest Neighbour, and AdaBoost, to recognize whether an application is malicious or not. The experiments have shown that several classifiers have demonstrated excellent performance and have an accuracy of up to 99%. The models with Support Vector Machine and AdaBoost classifiers have provided better detection accuracy of 99.3% and 99.5%, respectively.
Salsabila, Hanifah, Mardhiyah, Syafira, Budiarto Hadiprakoso, Raden.  2022.  Flubot Malware Hybrid Analysis on Android Operating System. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :202—206.
The rising use of smartphones each year is matched by the development of the smartphone's operating system, Android. Due to the immense popularity of the Android operating system, many unauthorized users (in this case, the attackers) wish to exploit this vulnerability to get sensitive data from every Android user. The flubot malware assault, which happened in 2021 and targeted Android devices practically globally, is one of the attacks on Android smartphones. It was known at the time that the flubot virus stole information, particularly from banking applications installed on the victim's device. To prevent this from happening again, we research the signature and behavior of flubot malware. In this study, a hybrid analysis will be conducted on three samples of flubot malware that are available on the open-source Hatching Triage platform. Using the Android Virtual Device (AVD) as the primary environment for malware installation, the analysis was conducted with the Android Debug Bridge (ADB) and Burpsuite as supporting tools for dynamic analysis. During the static analysis, the Mobile Security Framework (MobSF) and the Bytecode Viewer were used to examine the source code of the three malware samples. Analysis of the flubot virus revealed that it extracts or drops dex files on the victim's device, where the file is the primary malware. The Flubot virus will clone the messaging application or Short Message Service (SMS) on the default device. Additionally, we discovered a form of flubot malware that operates as a Domain Generation Algorithm (DGA) and communicates with its Command and Control (C&C) server.
Dhalaria, Meghna, Gandotra, Ekta.  2022.  Android Malware Risk Evaluation Using Fuzzy Logic. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :341—345.
The static and dynamic malware analysis are used by industrialists and academics to understand malware capabilities and threat level. The antimalware industries calculate malware threat levels using different techniques which involve human involvement and a large number of resources and analysts. As malware complexity, velocity and volume increase, it becomes impossible to allocate so many resources. Due to this reason, it is projected that the number of malware apps will continue to rise, and that more devices will be targeted in order to commit various sorts of cybercrime. It is therefore necessary to develop techniques that can calculate the damage or threat posed by malware automatically as soon as it is identified. In this way, early warnings about zero-day (unknown) malware can assist in allocating resources for carrying out a close analysis of it as soon as it is identified. In this paper, a fuzzy modelling approach is described for calculating the potential risk of malicious programs through static malware analysis.
2022-02-07
Osman, Mohd Zamri, Abidin, Ahmad Firdaus Zainal, Romli, Rahiwan Nazar, Darmawan, Mohd Faaizie.  2021.  Pixel-based Feature for Android Malware Family Classification using Machine Learning Algorithms. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :552–555.
‘Malicious software’ or malware has been a serious threat to the security and privacy of all mobile phone users. Due to the popularity of smartphones, primarily Android, this makes them a very viable target for spreading malware. In the past, many solutions have proved ineffective and have resulted in many false positives. Having the ability to identify and classify malware will help prevent them from spreading and evolving. In this paper, we study the effectiveness of the proposed classification of the malware family using a pixel level as features. This study has implemented well-known machine learning and deep learning classifiers such as K-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree, and Random Forest. A binary file of 25 malware families is converted into a fixed grayscale image. The grayscale images were then extracted transforming the size 100x100 into a single format into 100000 columns. During this phase, none of the columns are removed as to remain the patterns in each malware family. The experimental results show that our approach achieved 92% accuracy in Random Forest, 88% in SVM, 81% in Decision Tree, 80% in k-NN and 56% in Naïve Bayes classifier. Overall, the pixel-based feature also reveals a promising technique for identifying the family of malware with great accuracy, especially using the Random Forest classifier.
Keyes, David Sean, Li, Beiqi, Kaur, Gurdip, Lashkari, Arash Habibi, Gagnon, Francois, Massicotte, Frédéric.  2021.  EntropLyzer: Android Malware Classification and Characterization Using Entropy Analysis of Dynamic Characteristics. 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS). :1–12.
The unmatched threat of Android malware has tremendously increased the need for analyzing prominent malware samples. There are remarkable efforts in static and dynamic malware analysis using static features and API calls respectively. Nonetheless, there is a void to classify Android malware by analyzing its behavior using multiple dynamic characteristics. This paper proposes EntropLyzer, an entropy-based behavioral analysis technique for classifying the behavior of 12 eminent Android malware categories and 147 malware families taken from CCCS-CIC-AndMal2020 dataset. This work uses six classes of dynamic characteristics including memory, API, network, logcat, battery, and process to classify and characterize Android malware. Results reveal that the entropy-based analysis successfully determines the behavior of all malware categories and most of the malware families before and after rebooting the emulator.
2021-11-29
Nait-Abdesselam, Farid, Darwaish, Asim, Titouna, Chafiq.  2020.  An Intelligent Malware Detection and Classification System Using Apps-to-Images Transformations and Convolutional Neural Networks. 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
With the proliferation of Mobile Internet, handheld devices are facing continuous threats from apps that contain malicious intents. These malicious apps, or malware, have the capability of dynamically changing their intended code as they spread. Moreover, the diversity and volume of their variants severely undermine the effectiveness of traditional defenses, which typically use signature-based techniques, and make them unable to detect the previously unknown malware. However, the variants of malware families share typical behavioral patterns reflecting their origin and purpose. The behavioral patterns, obtained either statically or dynamically, can be exploited to detect and classify unknown malware into their known families using machine learning techniques. In this paper, we propose a new approach for detecting and analyzing a malware. Mainly focused on android apps, our approach adopts the two following steps: (1) performs a transformation of an APK file into a lightweight RGB image using a predefined dictionary and intelligent mapping, and (2) trains a convolutional neural network on the obtained images for the purpose of signature detection and malware family classification. The results obtained using the Androzoo dataset show that our system classifies both legacy and new malware apps with high accuracy, low false-negative rate (FNR), and low false-positive rate (FPR).
2020-12-11
Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K. R..  2019.  Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :296—303.

The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.

Fan, M., Luo, X., Liu, J., Wang, M., Nong, C., Zheng, Q., Liu, T..  2019.  Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :771—782.

The rapid growth of Android malware has posed severe security threats to smartphone users. On the basis of the familial trait of Android malware observed by previous work, the familial analysis is a promising way to help analysts better focus on the commonalities of malware samples within the same families, thus reducing the analytical workload and accelerating malware analysis. The majority of existing approaches rely on supervised learning and face three main challenges, i.e., low accuracy, low efficiency, and the lack of labeled dataset. To address these challenges, we first construct a fine-grained behavior model by abstracting the program semantics into a set of subgraphs. Then, we propose SRA, a novel feature that depicts the similarity relationships between the Structural Roles of sensitive API call nodes in subgraphs. An SRA is obtained based on graph embedding techniques and represented as a vector, thus we can effectively reduce the high complexity of graph matching. After that, instead of training a classifier with labeled samples, we construct malware link network based on SRAs and apply community detection algorithms on it to group the unlabeled samples into groups. We implement these ideas in a system called GefDroid that performs Graph embedding based familial analysis of AnDroid malware using unsupervised learning. Moreover, we conduct extensive experiments to evaluate GefDroid on three datasets with ground truth. The results show that GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between the clustering results and the ground truth. Furthermore, GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample on average, which is considerably faster than the previous work.

Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X., Jin, H..  2019.  MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :139—150.

Malware scanning of an app market is expected to be scalable and effective. However, existing approaches use either syntax-based features which can be evaded by transformation attacks or semantic-based features which are usually extracted by performing expensive program analysis. Therefor, in this paper, we propose a lightweight graph-based approach to perform Android malware detection. Instead of traditional heavyweight static analysis, we treat function call graphs of apps as social networks and perform social-network-based centrality analysis to represent the semantic features of the graphs. Our key insight is that centrality provides a succinct and fault-tolerant representation of graph semantics, especially for graphs with certain amount of inaccurate information (e.g., inaccurate call graphs). We implement a prototype system, MalScan, and evaluate it on datasets of 15,285 benign samples and 15,430 malicious samples. Experimental results show that MalScan is capable of detecting Android malware with up to 98% accuracy under one second which is more than 100 times faster than two state-of-the-art approaches, namely MaMaDroid and Drebin. We also demonstrate the feasibility of MalScan on market-wide malware scanning by performing a statistical study on over 3 million apps. Finally, in a corpus of dataset collected from Google-Play app market, MalScan is able to identify 18 zero-day malware including malware samples that can evade detection of existing tools.

2020-10-29
Jiang, Jianguo, Li, Song, Yu, Min, Li, Gang, Liu, Chao, Chen, Kai, Liu, Hui, Huang, Weiqing.  2019.  Android Malware Family Classification Based on Sensitive Opcode Sequence. 2019 IEEE Symposium on Computers and Communications (ISCC). :1—7.

Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.

2020-03-23
Bibi, Iram, Akhunzada, Adnan, Malik, Jahanzaib, Ahmed, Ghufran, Raza, Mohsin.  2019.  An Effective Android Ransomware Detection Through Multi-Factor Feature Filtration and Recurrent Neural Network. 2019 UK/ China Emerging Technologies (UCET). :1–4.
With the increasing diversity of Android malware, the effectiveness of conventional defense mechanisms are at risk. This situation has endorsed a notable interest in the improvement of the exactitude and scalability of malware detection for smart devices. In this study, we have proposed an effective deep learning-based malware detection model for competent and improved ransomware detection in Android environment by looking at the algorithm of Long Short-Term Memory (LSTM). The feature selection has been done using 8 different feature selection algorithms. The 19 important features are selected through simple majority voting process by comparing results of all feature filtration techniques. The proposed algorithm is evaluated using android malware dataset (CI-CAndMal2017) and standard performance parameters. The proposed model outperforms with 97.08% detection accuracy. Based on outstanding performance, we endorse our proposed algorithm to be efficient in malware and forensic analysis.
2019-10-02
Garcia, Joshua, Hammad, Mahmoud, Malek, Sam.  2018.  Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Malware. Proceedings of the 40th International Conference on Software Engineering. :497–497.

The number of malicious Android apps has been and continues to increase rapidly. These malware can damage or alter other files or settings, install additional applications, obfuscate their behaviors, propagate quickly, and so on. To identify and handle such malware, a security analyst can significantly benefit from identifying the family to which a malicious app belongs rather than only detecting if an app is malicious. To address these challenges, we present a novel machine learning-based Android malware detection and family-identification approach, RevealDroid, that operates without the need to perform complex program analyses or extract large sets of features. RevealDroid's selected features leverage categorized Android API usage, reflection-based features, and features from native binaries of apps. We assess RevealDroid for accuracy, efficiency, and obfuscation resilience using a large dataset consisting of more than 54,000 malicious and benign apps. Our experiments show that RevealDroid achieves an accuracy of 98% in detection of malware and an accuracy of 95% in determination of their families. We further demonstrate RevealDroid's superiority against state-of-the-art approaches. [URL of original paper: https://dl.acm.org/citation.cfm?id=3162625]

2019-06-10
Jain, D., Khemani, S., Prasad, G..  2018.  Identification of Distributed Malware. 2018 IEEE 3rd International Conference on Communication and Information Systems (ICCIS). :242-246.

Smartphones have evolved over the years from simple devices to communicate with each other to fully functional portable computers although with comparatively less computational power but inholding multiple applications within. With the smartphone revolution, the value of personal data has increased. As technological complexities increase, so do the vulnerabilities in the system. Smartphones are the latest target for attacks. Android being an open source platform and also the most widely used smartphone OS draws the attention of many malware writers to exploit the vulnerabilities of it. Attackers try to take advantage of these vulnerabilities and fool the user and misuse their data. Malwares have come a long way from simple worms to sophisticated DDOS using Botnets, the latest trends in computer malware tend to go in the distributed direction, to evade the multiple anti-virus apps developed to counter generic viruses and Trojans. However, the recent trend in android system is to have a combination of applications which acts as malware. The applications are benign individually but when grouped, these may result into a malicious activity. This paper proposes a new category of distributed malware in android system, how it can be used to evade the current security, and how it can be detected with the help of graph matching algorithm.

2019-02-22
Jung, Jaemin, Choi, Jongmoo, Cho, Seong-je, Han, Sangchul, Park, Minkyu, Hwang, Youngsup.  2018.  Android Malware Detection Using Convolutional Neural Networks and Data Section Images. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :149-153.
The paper proposes a new technique to detect Android malware effectively based on converting malware binaries into images and applying machine learning techniques on those images. Existing research converts the whole executable files (e.g., DEX files in Android application package) of target apps into images and uses them for machine learning. However, the entire DEX file (consisting of header section, identifier section, data section, optional link data area, etc.) might contain noisy information for malware detection. In this paper, we convert only data sections of DEX files into grayscale images and apply machine learning on the images with Convolutional Neural Networks (CNN). By using only the data sections for 5,377 malicious and 6,249 benign apps, our technique reduces the storage capacity by 17.5% on average compared to using the whole DEX files. We apply two CNN models, Inception-v3 and Inception-ResNet-v2, which are known to be efficient in image processing, and examine the effectiveness of our technique in terms of accuracy. Experiment results show that the proposed technique achieves better accuracy with smaller storage capacity than the approach using the whole DEX files. Inception-ResNet-v2 with the stochastic gradient descent (SGD) optimization algorithm reaches 98.02% accuracy.
2018-06-20
Seth, R., Kaushal, R..  2017.  Detection of transformed malwares using permission flow graphs. 2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :17–21.

With growing popularity of Android, it's attack surface has also increased. Prevalence of third party android marketplaces gives attackers an opportunity to plant their malicious apps in the mobile eco-system. To evade signature based detection, attackers often transform their malware, for instance, by introducing code level changes. In this paper we propose a lightweight static Permission Flow Graph (PFG) based approach to detect malware even when they have been transformed (obfuscated). A number of techniques based on behavioral analysis have also been proposed in the past; how-ever our interest lies in leveraging the permission framework alone to detect malware variants and transformations without considering behavioral aspects of a malware. Our proposed approach constructs Permission Flow Graph (PFG) for an Android App. Transformations performed at code level, often result in changing control flow, however, most of the time, the permission flow remains invariant. As a consequences, PFGs of transformed malware and non-transformed malware remain structurally similar as shown in this paper using state-of-the-art graph similarity algorithm. Furthermore, we propose graph based similarity metrics at both edge level and vertex level in order to bring forth the structural similarity of the two PFGs being compared. We validate our proposed methodology through machine learning algorithms. Results prove that our approach is successfully able to group together Android malware and its variants (transformations) together in the same cluster. Further, we demonstrate that our proposed approach is able to detect transformed malware with a detection accuracy of 98.26%, thereby ensuring that malicious Apps can be detected even after transformations.

2018-02-21
Zhang, X., Cao, Y., Yang, M., Wu, J., Luo, T., Liu, Y..  2017.  Droidrevealer: Automatically detecting Mysterious Codes in Android applications. 2017 IEEE Conference on Dependable and Secure Computing. :535–536.

The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.

2017-09-19
Zhu, Ziyun, Dumitras, Tudor.  2016.  FeatureSmith: Automatically Engineering Features for Malware Detection by Mining the Security Literature. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :767–778.

Malware detection increasingly relies on machine learning techniques, which utilize multiple features to separate the malware from the benign apps. The effectiveness of these techniques primarily depends on the manual feature engineering process, based on human knowledge and intuition. However, given the adversaries' efforts to evade detection and the growing volume of publications on malware behaviors, the feature engineering process likely draws from a fraction of the relevant knowledge. We propose an end-to-end approach for automatic feature engineering. We describe techniques for mining documents written in natural language (e.g. scientific papers) and for representing and querying the knowledge about malware in a way that mirrors the human feature engineering process. Specifically, we first identify abstract behaviors that are associated with malware, and then we map these behaviors to concrete features that can be tested experimentally. We implement these ideas in a system called FeatureSmith, which generates a feature set for detecting Android malware. We train a classifier using these features on a large data set of benign and malicious apps. This classifier achieves a 92.5% true positive rate with only 1% false positives, which is comparable to the performance of a state-of-the-art Android malware detector that relies on manually engineered features. In addition, FeatureSmith is able to suggest informative features that are absent from the manually engineered set and to link the features generated to abstract concepts that describe malware behaviors.

2014-09-26
Yajin Zhou, Xuxian Jiang.  2012.  Dissecting Android Malware: Characterization and Evolution. Security and Privacy (SP), 2012 IEEE Symposium on. :95-109.

The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.